Let M-3 be a non-compact hyperbolic 3-manifold that has a triangulation by positively oriented ideal tetrahedra. We show that the gluing variety defined by the gluing consistency equations is a smooth complex manifold with dimension equal to the number of boundary components of M-3. Moreover, we show that the complex lengths of any collection of non-trivial boundary curves, one from each boundary component, give a local holomorphic parameterization of the gluing variety. As an application, some estimates for the size of hyperbolic Dehn surgery space of once-punctured torus bundles are given. (C) 2004 Elsevier Ltd. All rights reserved.