The existence and nonexistence of positive solutions to a discrete fractional boundary value problem with a parameter

被引:13
|
作者
Han, Zhen-Lai [1 ]
Pan, Yuan-Yuan [1 ]
Yang, Dian-Wu [1 ]
机构
[1] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
关键词
Boundary value problem; Discrete fractional calculus; Existence of solutions; Guo-Krasnosel'skii theorem; Eigenvalue problem;
D O I
10.1016/j.aml.2014.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and nonexistence of positive solutions for the boundary value problem with a parameter {-Delta(v)y(t) = lambda f(t + v - 1, y(t + v - 1)), y(v - 2) = y(v + b + 1) = 0, where t is an element of [0, b + 1](N), 1 < v <= 2 is a real number, f : [v - 1, v + b](Nv-1) x R -> (0, +infinity) is a continuous function, b >= 2 is an integer, lambda is a parameter. The eigenvalue intervals of the nonlinear fractional differential equation boundary value problem are considered by the properties of the Green function and Guo-Krasnosel'skii fixed point theorem on cones, some sufficient conditions of the nonexistence of positive solutions for the boundary value problem are established. As applications, we give some examples to illustrate the main results. C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Existence of a positive solution to a system of discrete fractional boundary value problems
    Goodrich, Christopher S.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4740 - 4753
  • [32] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    I. Merzoug
    A. Guezane-Lakoud
    R. Khaldi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1099 - 1106
  • [33] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    Merzoug, I.
    Guezane-Lakoud, A.
    Khaldi, R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1099 - 1106
  • [34] The existence of solutions for boundary value problems of fractional differential inclusion with a parameter
    Jin N.
    Sun S.
    Zhang C.
    Han Z.
    Journal of Applied Mathematics and Computing, 2016, 52 (1-2) : 387 - 402
  • [35] ON DISCRETE SEQUENTIAL FRACTIONAL BOUNDARY VALUE PROBLEM WITH FRACTIONAL BOUNDARY CONDITIONS
    Yu Zhang
    Chengmin Hou
    Annals of Applied Mathematics, 2013, (03) : 369 - 378
  • [36] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A FRACTIONAL BOUNDARY VALUE PROBLEM WITH DIRICHLET BOUNDARY CONDITION
    Graef, John R.
    Kong, Lingju
    Kong, Qingkai
    Wang, Min
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (55) : 1 - 11
  • [37] Existence and nonexistence results for a class of fractional boundary value problems
    Zhao X.
    Chai C.
    Ge W.
    Zhao, X. (zhaoxiangkui@126.com), 1600, Springer Verlag (41): : 17 - 31
  • [38] Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter
    He, Tieshan
    Yang, Fengjian
    Chen, Chuanyong
    Peng, Shiguo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (11) : 3355 - 3363
  • [39] The existence of solutions for boundary value problem of fractional hybrid differential equations
    Sun, Shurong
    Zhao, Yige
    Han, Zhenlai
    Li, Yanan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) : 4961 - 4967
  • [40] Existence of solutions for fourth-order boundary value problem with parameter
    Yang Yang
    Ji-hui Zhang
    Applied Mathematics and Mechanics, 2010, 31 : 377 - 384