Group classification and exact solutions of nonlinear wave equations

被引:49
作者
Lahno, V.
Zhdanov, R.
Magda, O.
机构
[1] NAS Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[2] State Pedag Univ, UA-36000 Poltava, Ukraine
关键词
D O I
10.1007/s10440-006-9039-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform complete group classification of the general class of quasi linear wave equations in two variables. This class may be seen as a broad generalization of the nonlinear d'Alembert, Liouville, sin/sinh-Gordon and Tzitzeica equations. In this way we derived a number of new genuinely nonlinear invariant models with high symmetry properties. In particular, we obtain four classes of nonlinear wave equations admitting five-dimensional invariance groups. Applying the symmetry reduction technique we construct multi-parameter families of exact solutions of these equations.
引用
收藏
页码:253 / 313
页数:61
相关论文
共 47 条
[1]   Group classification of nonlinear evolutionary equations: II. Invariance under solvable groups of local transformations [J].
Abramenko, AA ;
Lagno, VI ;
Samoilenko, AM .
DIFFERENTIAL EQUATIONS, 2002, 38 (04) :502-509
[2]   GROUP PROPERTIES OF UTT=[F(U)UX]X [J].
AMES, WF ;
LOHNER, RJ ;
ADAMS, E .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1981, 16 (5-6) :439-447
[3]  
AMES WF, 1972, NONLINEAR PARTIAL DI, V2, P87
[4]  
ANDREEV VK, 1994, APPL GROUP THEORETIC
[5]   GROUP PROPERTIES OF UXX - UY(M)UYY = F(U) [J].
ARRIGO, DJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1991, 26 (05) :619-629
[6]  
Barone A., 1971, Rivista del Nuovo Cimento, V1, P227, DOI 10.1007/BF02820622
[7]  
Barut A., 1977, THEORY GROUP REPRESE
[8]   The structure of lie algebras and the classification problem for partial differential equations [J].
Basarab-Horwath, P ;
Lahno, V ;
Zhdanov, R .
ACTA APPLICANDAE MATHEMATICAE, 2001, 69 (01) :43-94
[9]  
BULLOUGH RK, 1978, ROCKY MOUNTAIN J MAT, V8, P53, DOI DOI 10.1216/RMJ-1978-8-1-53
[10]  
CALOGERO F, 1982, SOLITONS SPECTRAL TR, V1