On Vizing's bound for the chromatic index of a multigraph

被引:9
作者
Scheide, Diego [1 ]
Stiebitz, Michael [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
关键词
Edge coloring; Chromatic index; Vizing's bound;
D O I
10.1016/j.disc.2008.04.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two of the basic results on edge coloring are Vizing's Theorem [V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25-30 (in Russian): V.G. Vizing, The chromatic class of a multigraph, Kibernetika (Kiev) 3 (1965) 29-39 (in Russian). English translation in Cybernetics 132-41], which states that the chromatic index chi'(G) of a (multi)graph G with maximum degree Delta(G) and maximum multiplicity mu(G) satisfies Delta(G) <= chi'(G) <= Delta(G) + mu(G), and Holyer's Theorem [I. Holyer, The NP-completeness of edge-colouring, SIAM J. Comput. 10 (1981) 718-720], which states that the problem of determining the chromatic index of even a simple graph is NP-hard. Hence, a good characterization of those graphs for which Vizing's upper bound is attained seems to be unlikely. On the other hand, Vizing noticed in the first two above-cited references that the upper bound cannot be attained if Delta(G) = 2 mu(G) + 1 >= 5. In this paper we discuss the problem: For which values Delta, mu does there exist a graph G satisfying Delta(G) = Delta, mu(G) = mu, and chi'(G) = Delta + mu. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4920 / 4925
页数:6
相关论文
共 17 条
[1]   EDGE-COLORINGS OF GRAPHS [J].
ANDERSEN, LD .
MATHEMATICA SCANDINAVICA, 1977, 40 (02) :161-175
[2]   CRITICAL STAR MULTIGRAPHS [J].
CHETWYND, AG ;
HILTON, AJW .
GRAPHS AND COMBINATORICS, 1986, 2 (03) :209-221
[3]  
Goldberg M.K., 1974, Vycisl. Mat. i. Vycisl. Tehn. (Kharkow), V5, P128
[4]  
Goldberg M.K., 1973, Diskret. Analiz, V23, P3
[5]   EDGE-COLORING OF MULTIGRAPHS - RECOLORING TECHNIQUE [J].
GOLDBERG, MK .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :123-137
[6]   THE NP-COMPLETENESS OF EDGE-COLORING [J].
HOLYER, I .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :718-720
[7]   ON THE 1.1 EDGE-COLORING OF MULTIGRAPHS [J].
NISHIZEKI, T ;
KASHIWAGI, K .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) :391-410
[8]  
SCHEIDE D, THESIS
[9]  
Scheide D., 2007, THESIS TU ILMENAU
[10]  
Seymour P. D., 1979, GRAPH THEORY RELATED