Influence of the Precursor Metamorphism Degree on Preparation of Nitrogen-enriched Activated Carbons by Ammoxidation and Chemical Activation of Coals

被引:46
作者
Nowicki, Piotr [1 ]
Pietrzak, Robert [1 ]
Wachowska, Helena [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Chem, Lab Coal Chem & Technol, PL-60780 Poznan, Poland
关键词
SURFACE-CHEMISTRY; CO2; CAPTURE; BROWN-COAL; TEMPERATURE; ADSORPTION; REDUCTION; REMOVAL; SO2; NO;
D O I
10.1021/ef801094c
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The paper presents results of a study on obtaining N-enriched active carbons from four hard coals with different degree of metamorphism. The starting materials were carbonized, activated with KOH, and ammoxidized by a mixture of ammonia and air at the ratio 1:3 at 300 and 350 degrees C, at each stage of the active carbon production. The efficiency of ammoxidation was found to depend on the degree of metamorphism of the precursor, the stage of processing at which ammoxidation is performed, and the temperature of this process. Ammoxidation of the active carbon led to a decrease in their surface area and pore volume, whereas that performed both at the stage of the precursor and the carbonizate brought improvement of textural parameters of the active carbons obtained. The sequence of the carbonization, activation, and ammoxidation processes had a significant effect on the acid-base character of the active carbon samples obtained. The majority of the active carbons modified at the stage of precursor and carbonizate showed considerable prevalence of surface acidic groups, whereas the samples ammoxidized after activation showed an intermediate acidic-basic character of the surface.
引用
收藏
页码:2205 / 2212
页数:8
相关论文
共 24 条
[1]   Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons [J].
Adib, F ;
Bagreev, A ;
Bandosz, TJ .
LANGMUIR, 2000, 16 (04) :1980-1986
[2]   CO2 capture using some fly ash-derived carbon materials [J].
Arenillas, A ;
Smith, KM ;
Drage, TC ;
Snape, CE .
FUEL, 2005, 84 (17) :2204-2210
[3]   Adsorption of SO2 on activated carbons:: The effect of nitrogen functionality and pore sizes [J].
Bagreev, A ;
Bashkova, S ;
Bandosz, TJ .
LANGMUIR, 2002, 18 (04) :1257-1264
[4]   Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide [J].
Bagreev, A ;
Menendez, JA ;
Dukhno, I ;
Tarasenko, Y ;
Bandosz, TJ .
CARBON, 2004, 42 (03) :469-476
[5]   Modified active carbons from precursors enriched with nitrogen functions: sulfur removal capabilities [J].
Bimer, J ;
Satbut, PD ;
Bertozecki, S ;
Boudou, JP ;
Broniek, E ;
Siemieniewska, T .
FUEL, 1998, 77 (06) :519-525
[6]   The characterization of activated carbons with oxygen and nitrogen surface groups [J].
Biniak, S ;
Szymanski, G ;
Siedlewski, J ;
Swiatkowski, A .
CARBON, 1997, 35 (12) :1799-1810
[7]   SURFACE OXIDES OF CARBON [J].
BOEHM, HP ;
HECK, W ;
SAPPOK, R ;
DIEHL, E .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1964, 3 (10) :669-&
[8]   SOME ASPECTS OF THE SURFACE-CHEMISTRY OF CARBON-BLACKS AND OTHER CARBONS [J].
BOEHM, HP .
CARBON, 1994, 32 (05) :759-769
[9]   Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment [J].
Boudou, JP ;
Chehimi, M ;
Broniek, E ;
Siemieniewska, T ;
Bimer, J .
CARBON, 2003, 41 (10) :1999-2007
[10]   Sulfurization of carbon surface for vapor phase mercury removal - I: Effect of temperature and sulfurization protocol [J].
Feng, Wenguo ;
Borguet, Eric ;
Vidic, Radisav D. .
CARBON, 2006, 44 (14) :2990-2997