On a convolution series attached to a Siegel Hecke cusp form of degree 2

被引:8
作者
Das, Soumya [1 ]
Kohnen, Winfried [2 ]
Sengupta, Jyoti [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, Maharashtra, India
[2] Heidelberg Univ, Math Inst, D-69120 Heidelberg, Germany
关键词
Eigenvalues; Siegel modular forms; Rankin-Selberg convolution;
D O I
10.1007/s11139-013-9495-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the "naive" convolution Dirichlet series D-2(s) attached to a degree 2 Siegel Hecke cusp form F, has a pole at s = 1. As an application, we write down the asymptotic formula for the partial sums of the squares of the eigenvalues of F with an explicit error term. Further, as a corollary, we are able to show that the abscissa of absolute convergence of the (normalized) spinor-zeta function attached to F is s = 1.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 12 条
[1]  
Andrianov A.N., 1974, RUSSIAN MATH SURVEYS, V29, P45, DOI [10.1070/RM1974v029n03ABEH001285, DOI 10.1070/RM1974V029N03ABEH001285]
[2]  
[Anonymous], 1981, I HAUTES ETUDES SCI
[3]  
[Anonymous], 1997, PROGR MATH
[4]  
Duke W, 2000, INVENT MATH, V139, P1
[5]  
Freitag E., 1983, Siegelsche Modulfunktionen, V254
[6]   ON THE CONVERGENCE OF SPINOR ZETA-FUNCTIONS ATTACHED TO HECKE EIGENFORMS ON SP(4)(Z) [J].
KOHNEN, W .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (03) :673-681
[8]   The first negative Hecke eigenvalue of a Siegel cusp form of genus two [J].
Kohnen, Winfried ;
Sengupta, Jyoti .
ACTA ARITHMETICA, 2007, 129 (01) :53-62
[9]  
Liu J, 2007, PURE APPL MATH Q, V3, P481
[10]  
Pitale A., 2011, ARXIV11065611