Effects of Humic Acid and Solution Chemistry on the Retention and Transport of Cerium Dioxide Nanoparticles in Saturated Porous Media

被引:41
|
作者
Lv, Xueyan [1 ]
Gao, Bin [2 ]
Sun, Yuanyuan [1 ]
Shi, Xiaoqing [1 ]
Xu, Hongxia [1 ]
Wu, Jichun [1 ]
机构
[1] Nanjing Univ, Hydrosci Dept, Sch Earth Sci & Engn, Key Lab Surficial Geochem,Minist Educ, Nanjing 210093, Jiangsu, Peoples R China
[2] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助;
关键词
Cerium oxide; Engineered nanoparticles; Solution chemistry; Humic acid; Transport; Model; LABELED HYDROXYAPATITE NANOPARTICLES; METAL-OXIDE NANOPARTICLES; NATURAL ORGANIC-MATTER; CEO2; NANOPARTICLES; AGGREGATION KINETICS; GRAPHENE OXIDE; IONIC-STRENGTH; DEPOSITION; WATER; MOBILITY;
D O I
10.1007/s11270-014-2167-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
When released into natural aquatic systems, cerium oxide (CeO2) nanoparticles (NPs) may have toxic effects to the ecosystems and public health; it is thus important to understand their environmental fate and transport. This work studied the effects of humic acid (HA) concentrations (0-10 mg L-1) and solution chemistry (ionic strength (IS) and pH) on the retention and transport of CeO2 NPs in water-saturated porous media under environmental relevant conditions. HA and IS showed remarkable effect on the retention and transport of CeO2 NPs in the porous media. Even at low concentrations (i.e., 5 and 10 mg L-1), HA stabilized CeO2 NPs in the suspensions by introducing both negative surface charge and steric repulsion and thus enhanced their mobility in the porous media. When solution HA concentration increased or ionic strength decreased, mobility of CeO2 NPs in the porous media enhanced dramatically. Solution pH, however, had little influence on the mobility of the CeO2 NPs under the tested experimental conditions, and increasing solution pH only slightly increased the transport of the NPs. Mathematical models were applied to describe the experimental data. Predictions from the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and advection-dispersion-reaction (ADR) model matched the experimental data well.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Transport of metal oxide nanoparticles in saturated porous media
    Ben-Moshe, Tal
    Dror, Ishai
    Berkowitz, Brian
    CHEMOSPHERE, 2010, 81 (03) : 387 - 393
  • [32] Effects of physicochemical factors on the transport of aged polystyrene nanoparticles in saturated porous media
    Xi, Xianglong
    Wang, Le
    Zhou, Ting
    Yin, Jing
    Sun, Huimin
    Yin, Xianqiang
    Wang, Nong
    CHEMOSPHERE, 2022, 289
  • [33] Transport and retention behaviors of titanium dioxide nanoparticles in iron oxide-coated quartz sand: Effects of pH, ionic strength, and humic acid
    Han, Peng
    Wang, Xueting
    Cai, Li
    Tong, Meiping
    Kim, Hyunjung
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 454 : 119 - 127
  • [34] Cotransport of Titanium Dioxide and Fullerene Nanoparticles in Saturated Porous Media
    Cai, Li
    Tong, Meiping
    Ma, Hanyu
    Kim, Hyunjung
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) : 5703 - 5710
  • [35] Humic acid induced weak attachment of fullerene nC60 nanoparticles and subsequent detachment upon reduction of solution ionic strength in saturated porous media
    Wang, Zhan
    Li, Tiantian
    Shen, Chongyang
    Shang, Jianying
    Shi, Kaiyu
    Zhang, Yulong
    Li, Baoguo
    JOURNAL OF CONTAMINANT HYDROLOGY, 2020, 231
  • [36] Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid
    Yang, Haiyan
    Ge, Zhi
    Wu, Dan
    Tong, Meiping
    Ni, Jinren
    WATER RESEARCH, 2016, 88 : 586 - 594
  • [37] Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size
    Sun, Yuanyuan
    Gao, Bin
    Bradford, Scott A.
    Wu, Lei
    Chen, Hao
    Shi, Xiaoqing
    Wu, Jichun
    WATER RESEARCH, 2015, 68 : 24 - 33
  • [38] Retention and Transport of Silica Nanoparticles in Saturated Porous Media: Effect of Concentration and Particle Size
    Wang, Chao
    Bobba, Aparna Devi
    Attinti, Ramesh
    Shen, Chongyang
    Lazouskaya, Volha
    Wang, Lian-Ping
    Jin, Yan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (13) : 7151 - 7158
  • [39] Effect of Carbon Nanotubes on the Transport and Retention of Bacteria in Saturated Porous Media
    Yang, Haiyan
    Tong, Meiping
    Kim, Hyunjung
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (20) : 11537 - 11544
  • [40] Humic Acid Transport in Water-Saturated Porous Media
    Wei, Xiaorong
    Shao, Mingan
    Horton, Robert
    Han, Xinning
    ENVIRONMENTAL MODELING & ASSESSMENT, 2010, 15 (01) : 53 - 63