From Atiyah Classes to Homotopy Leibniz Algebras

被引:30
作者
Chen, Zhuo [1 ]
Stienon, Mathieu [2 ]
Xu, Ping [2 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
ROZANSKY-WITTEN INVARIANTS; MATCHED PAIRS; LIE-ALGEBRAS; CATEGORY; PBW;
D O I
10.1007/s00220-015-2494-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold X makes T (X) [-1] into a Lie algebra object in D (+) (X), the bounded below derived category of coherent sheaves on X. Furthermore, Kapranov proved that, for a Kahler manifold X, the Dolbeault resolution of T (X) [-1] is an L (a) algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair (L, A), i.e. a Lie algebroid L together with a Lie subalgebroid A, we define the Atiyah class alpha (E) of an A-module E as the obstruction to the existence of an A-compatible L-connection on E. We prove that the Atiyah classes alpha (L/A) and alpha (E) respectively make L/A[-1] and E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category , where is the abelian category of left -modules and is the universal enveloping algebra of A. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/A and E, and inducing the aforesaid Lie structures in .
引用
收藏
页码:309 / 349
页数:41
相关论文
共 56 条
[41]  
Molino P., 1973, Topology, V12, P317, DOI [10.1016/0040-9383(73)90026-8, DOI 10.1016/0040-9383(73)90026-8]
[42]  
Molino P., 1971, C R ACAD SCI PARIS A, V272, pA779
[43]   The big Chern classes and the Chern character [J].
Ramadoss, Ajay C. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (06) :699-746
[44]  
Rinehart George S., 1963, Trans. Amer. Math. Soc., V108, P195, DOI 10.2307/1993603
[45]   On the Rozansky-Witten weight systems [J].
Roberts, Justin ;
Willerton, Simon .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (03) :1455-1519
[46]  
Rozansky L., 1997, Selecta Math. (N.S.), V3, P401, DOI [10.1007/ s000290050016. arXiv: hep-th/, DOI 10.1007/S000290050016.ARXIV:HEP-TH, 10.1007/s000290050016, DOI 10.1007/S000290050016]
[47]  
Shoikhet B., 1998, ARXIVMATH9812009
[49]   Derived brackets and sh Leibniz algebras [J].
Uchino, K. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (05) :1102-1111
[50]  
Vaisman I., 1974, AN STI U AL I CUZA I, V20, P327