From Atiyah Classes to Homotopy Leibniz Algebras

被引:30
作者
Chen, Zhuo [1 ]
Stienon, Mathieu [2 ]
Xu, Ping [2 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
ROZANSKY-WITTEN INVARIANTS; MATCHED PAIRS; LIE-ALGEBRAS; CATEGORY; PBW;
D O I
10.1007/s00220-015-2494-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold X makes T (X) [-1] into a Lie algebra object in D (+) (X), the bounded below derived category of coherent sheaves on X. Furthermore, Kapranov proved that, for a Kahler manifold X, the Dolbeault resolution of T (X) [-1] is an L (a) algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair (L, A), i.e. a Lie algebroid L together with a Lie subalgebroid A, we define the Atiyah class alpha (E) of an A-module E as the obstruction to the existence of an A-compatible L-connection on E. We prove that the Atiyah classes alpha (L/A) and alpha (E) respectively make L/A[-1] and E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category , where is the abelian category of left -modules and is the universal enveloping algebra of A. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/A and E, and inducing the aforesaid Lie structures in .
引用
收藏
页码:309 / 349
页数:41
相关论文
共 56 条
[1]   COALGEBRAIC APPROACH TO THE LODAY INFINITY CATEGORY, STEM DIFFERENTIAL FOR 2n-ARY GRADED AND HOMOTOPY ALGEBRAS [J].
Ammar, Mourad ;
Poncin, Norbert .
ANNALES DE L INSTITUT FOURIER, 2010, 60 (01) :355-386
[2]  
[Anonymous], TRAVAUX MATH
[3]   When is the self-intersection of a subvariety a fibration? [J].
Arinkin, Dima ;
Caldararu, Andrei .
ADVANCES IN MATHEMATICS, 2012, 231 (02) :815-842
[4]  
Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
[5]   Two applications of elementary knot theory to Lie algebras and Vassiliev invariants [J].
Bar-Natan, D ;
Le, TTQ ;
Thurston, DP .
GEOMETRY & TOPOLOGY, 2003, 7 :1-31
[6]   Wheels, wheeling, and the Kontsevich integral of the unknot [J].
Bar-Natan, D ;
Garoufalidis, S ;
Rozansky, L ;
Thurston, DP .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 119 (1) :217-237
[7]  
Bordemann M., 2005, Trav. Math., V16, P9
[8]  
BOTT R., 1972, Springer LNM, V279, P1
[9]   A PBW theorem for inclusions of (sheaves of) Lie algebroids [J].
Calaque, Damien .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 :23-47
[10]   PBW for an inclusion of Lie algebras [J].
Calaque, Damien ;
Caldararu, Andrei ;
Tu, Junwu .
JOURNAL OF ALGEBRA, 2013, 378 :64-79