Information Granules in Application to Image Recognition

被引:5
作者
Wiaderek, Krzysztof [1 ]
Rutkowska, Danuta [1 ,2 ]
Rakus-Andersson, Elisabeth [3 ]
机构
[1] Czestochowa Tech Univ, Inst Comp & Informat Sci, PL-42201 Czestochowa, Poland
[2] Univ Social Sci, Inst Informat Technol, PL-90113 Lodz, Poland
[3] Blekinge Inst Technol, Dept Math & Nat Sci, S-37179 Karlskrona, Sweden
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I | 2015年 / 9119卷
关键词
FUZZY-LOGIC; CLASSIFICATION; SETS; SEGMENTATION; GRANULATION;
D O I
10.1007/978-3-319-19324-3_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper concerns specific problems of color digital image recognition by use of the concept of fuzzy and rough granulation. This idea employs information granules that contain pieces of knowledge about digital pictures such as color, location, size, and shape of an object to be recognized. The object information granule (OIG) is introduced, and the Granular Pattern Recognition System (GPRS) proposed, in order to solve different tasks formulated with regard to the information granules.
引用
收藏
页码:649 / 659
页数:11
相关论文
共 28 条
[1]   TEMPORAL ANALYSIS OF ADAPTIVE FACE RECOGNITION [J].
Akhtar, Zahid ;
Rattani, Ajita ;
Foresti, Gian Luca .
JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2014, 4 (04) :243-255
[2]  
[Anonymous], 2007, FUZZY ROUGH TECHNIQU
[3]  
[Anonymous], 2011, J ARTIF INTELL SOFT
[4]  
Bazarganigilani M., 2011, J ARTIFICIAL INTELLI, V1, P147
[5]  
Becker-Asano Christian., 2011, Journal of Artificial Intelligence and Soft Computing Research, V1, P215
[6]   SEGMENTATION AND EDGE DETECTION BASED ON MODIFIED ANT COLONY OPTIMIZATION FOR IRIS IMAGE PROCESSING [J].
Biniaz, Abbas ;
Abbasi, Ataollah .
JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2013, 3 (02) :133-141
[7]   FAST FCM WITH SPATIAL NEIGHBORHOOD INFORMATION FOR BRAIN MR IMAGE SEGMENTATION [J].
Biniaz, Abbas ;
Abbasi, Ataollah .
JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2013, 3 (01) :15-25
[8]   WEB-BASED FRAMEWORK FOR BREAST CANCER CLASSIFICATION [J].
Bruzdzinski, Tomasz ;
Krzyzak, Adam ;
Fevens, Thomas ;
Jelen, Lukasz .
JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2014, 4 (02) :149-162
[9]  
Fortner B., 1997, NUMBER COLOR GUIDE U
[10]   A NOVEL APPROACH FOR AUTOMATIC DETECTION AND CLASSIFICATION OF SUSPICIOUS LESIONS IN BREAST ULTRASOUND IMAGES [J].
Karimi, Behnam ;
Krzyzak, Adam .
JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2013, 3 (04) :265-276