Bio-oil production from eight selected green landscaping wastes through hydrothermal liquefaction

被引:36
|
作者
Cao, Leichang [1 ]
Luo, Gang [1 ]
Zhang, Shicheng [1 ]
Chen, Jianmin [1 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
MUNICIPAL SOLID-WASTE; HOT-COMPRESSED WATER; MACROALGAE ENTEROMORPHA-PROLIFERA; CULTURE ALGAL BIOMASS; CHLORELLA-SOROKINIANA; RENEWABLE ENERGY; TREATMENT SYSTEM; CONVERSION; LIGNIN; CRUDE;
D O I
10.1039/c5ra24760h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study investigated the potential of eight types of green landscaping waste as feedstock to produce bio-oil through hydrothermal liquefaction (HTL). The eight selected plants differed in terms of botanical classification, morphology, leaf state, and growth habit. Leaves and branches as waste from these plants were separately subjected to HTL in a high-pressure batch reactor at 300 degrees C for 0.5 h. Results indicated the bio-oils and biochars of leaves obviously differed from those of branches in terms of yields and higher heating values (HHVs). However, less difference in yields and HHVs was found for HTL products within the eight leaves even though they were different in composition components such as cellulose, hemicelluloses, and lignin. The same was observed for branches. The average bio-oil yields of the leaves and branches were 33.74 and 43.22 wt%, respectively. The optimal bio-oil yield was 50.44 wt%, which was obtained when Cinnamomum camphora branches were used as feedstock. The average HHVs of light and heavy oils in the leaves were 25.13 and 31.27 MJ kg(-1), respectively. These HHVs were higher than those of light and heavy oils in the branches (21.51 and 28.71 MJ kg(-1), respectively). Among the oil products, the heavy oil derived from Salix alba leaves yielded the optimum HHV (35.63 MJ kg(-1)). The mean HHV of biochar was 24.17 MJ kg(-1), which was considerably higher than that of feedstock (17.21 MJ kg(-1)). Gas chromatography-mass spectrometry and Fourier-transform infrared spectrometry revealed the presence of value-added chemicals, such as phenolics, ketones, esters, acids, and alcohols, in bio-oils. The amounts of alkanes, alkenes, and alkynes in the bio-oils derived from the leaves were higher than those in the bio-oils derived from the branches. These results indicated the feasibility of using different types of green landscaping waste as feedstock to produce bio-oils with high HHV and yield through HTL.
引用
收藏
页码:15260 / 15270
页数:11
相关论文
共 50 条
  • [1] Bio-oil Production from Hydrothermal Liquefaction of Cyanophyta
    Song, W. H.
    Wang, S. Z.
    Guo, Y.
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 100 - 107
  • [2] Optimization of bio-oil production from hydrothermal liquefaction of cyanophyta
    Ma, Qiran
    Guo, Yang
    Wang, Shuzhong
    Song, Wenhan
    Zhang, Fan
    Zhang, Xin
    Ni, Shiyao
    Shi, Dongbo
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49 (03): : 56 - 61
  • [3] A review of bio-oil production from hydrothermal liquefaction of algae
    Guo, Yang
    Yeh, Thomas
    Song, Wenhan
    Xu, Donghai
    Wang, Shuzhong
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 48 : 776 - 790
  • [4] Production of bio-oil via hydrothermal liquefaction of birch sawdust
    Malins, Kristaps
    ENERGY CONVERSION AND MANAGEMENT, 2017, 144 : 243 - 251
  • [5] Bio-oil Production via Subcritical Hydrothermal Liquefaction of Biomass
    Durak, Halil
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [6] Hydrothermal liquefaction of cornelian cherry stones for bio-oil production
    Akalin, Mehmet K.
    Tekin, Kubilay
    Karagoz, Selhan
    BIORESOURCE TECHNOLOGY, 2012, 110 : 682 - 687
  • [7] Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions
    Hadhoum, Loubna
    Balistrou, Mourad
    Burnens, Gatan
    Loubar, Khaled
    Tazerout, Mohand
    BIORESOURCE TECHNOLOGY, 2016, 218 : 9 - 17
  • [8] Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction
    Chan, Yi Herng
    Yusup, Suzana
    Quitain, Armando T.
    Uemura, Yoshimitsu
    Sasaki, Mitsuru
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 95 : 407 - 412
  • [9] Catalytic hydrothermal liquefaction of Chlorella into bio-oil
    Humphries, Nicole
    Kaiser, Sam
    Jang, Wen-Long
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [10] Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics
    Agbulut, Umit
    Sirohi, Ranjna
    Lichtfouse, Eric
    Chen, Wei-Hsin
    Len, Christophe
    Show, Pau Loke
    Le, Anh Tuan
    Nguyen, Xuan Phuong
    Hoang, Anh Tuan
    BIORESOURCE TECHNOLOGY, 2023, 376