Arithmetic progressions in sumsets

被引:49
作者
Green, B [1 ]
机构
[1] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
基金
英国工程与自然科学研究理事会;
关键词
Structural Result; Arithmetic Progression; Positive Real;
D O I
10.1007/s00039-002-8258-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several results concerning arithmetic progressions in sets of integers. Suppose, for example, that alpha and beta are positive reals, that N is a large prime and that C, D subset of or equal to Z/NZ have sizes gammaN and deltaN respectively. Then the sumset C + D contains an AP of length at least e(crootlog N), where c > 0 depends only on gamma and delta. In deriving these results we introduce the concept of hereditary non-uniformity (HNU) for subsets of Z/NZ, and prove a structural result for sets with this property.
引用
收藏
页码:584 / 597
页数:14
相关论文
共 12 条
[1]  
BERNSTEIN S, 1924, ANN SCI I SAV UKR SE
[2]  
Bogolyubov Nikolay N., 1939, Zap. kafedry mat. fiziki Kiev, V4, P185
[3]   On triples in arithmetic progression [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (05) :968-984
[4]  
Bourgain J., 1990, A Tribute to Paul Erdos, P105, DOI DOI 10.1017/CBO9780511983917.008
[5]  
CHANG MC, IN PRESS DUKE MATH J
[6]  
FREIMAN GA, 1992, J LOND MATH SOC, V46, P193
[7]   A new proof of Szemeredi's theorem [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :465-588
[8]  
Green B., EDINBURGH LECT NOTES
[9]  
GREEN BJ, SOME CONSTRUCTIONS I
[10]  
GREEN BJ, BERNSTEINS INEQUALIT