Operator locality in the quantum simulation of fermionic models

被引:72
作者
Havlicek, Vojtech [1 ,2 ,3 ]
Troyer, Matthias [1 ,2 ,4 ]
Whitfield, James D. [5 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Stn Zurich Q, CH-8093 Zurich, Switzerland
[3] Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford OX1 3QD, England
[4] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
[5] Dartmouth Coll, Dept Phys & Astron, 6127 Wilder Lab, Hanover, NH 03755 USA
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
HAMILTONIANS; COMPUTATION; COMPLEXITY; COMPUTERS;
D O I
10.1103/PhysRevA.95.032332
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Simulating fermionic lattice models with qubits requires mapping fermionic degrees of freedom to qubits. The simplest method for this task, the Jordan-Wigner transformation, yields strings of Pauli operators acting on an extensive number of qubits. This overhead can be a hindrance to implementation of qubit-based quantum simulators, especially in the analog context. Here we thus review and analyze alternative fermion-to-qubit mappings, including the two approaches by Bravyi and Kitaev and the auxiliary fermion transformation. The Bravyi-Kitaev transform is reformulated in terms of a classical data structure and generalized to achieve a further locality improvement for local fermionic models on a rectangular lattice. We conclude that the most compact encoding of the fermionic operators can be done using ancilla qubits with the auxiliary fermion scheme. Without introducing ancillas, a variant of the Bravyi-Kitaev transform provides the most compact fermion-to-qubit mapping for Hubbard-like models.
引用
收藏
页数:9
相关论文
共 26 条
[1]  
Altland A., 2010, CONDENSED MATTER FIE
[2]   Fermions without fermion fields [J].
Ball, RC .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[3]   Hybrid Quantum-Classical Approach to Correlated Materials [J].
Bauer, Bela ;
Wecker, Dave ;
Millis, Andrew J. ;
Hastings, Matthew B. ;
Troyer, Matthias .
PHYSICAL REVIEW X, 2016, 6 (03)
[4]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[5]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[6]   Quantum Simulators [J].
Buluta, Iulia ;
Nori, Franco .
SCIENCE, 2009, 326 (5949) :108-111
[7]   Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model [J].
Dallaire-Demers, Pierre-Luc ;
Wilhelm, Frank K. .
PHYSICAL REVIEW A, 2016, 94 (06)
[8]   A NEW DATA STRUCTURE FOR CUMULATIVE FREQUENCY TABLES [J].
FENWICK, PM .
SOFTWARE-PRACTICE & EXPERIENCE, 1994, 24 (03) :327-336
[9]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[10]   Quantum simulation [J].
Georgescu, I. M. ;
Ashhab, S. ;
Nori, Franco .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :153-185