Analysis and Application Using Quad Compound Combination Anti-synchronization on Novel Fractional-Order Chaotic System

被引:12
作者
Jahanzaib, Lone Seth [1 ]
Trikha, Pushali [1 ]
Baleanu, Dumitru [2 ,3 ,4 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
[2] Cankaya Univ, Dept Math, TR-1406530 Ankara, Turkey
[3] Inst Space Sci, Bucharest, Romania
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
关键词
Dynamical analysis; Quad compound combination anti-synchronization; Adaptive sliding mode control; Nonlinear control; Secure communication; PHASE;
D O I
10.1007/s13369-020-04939-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this manuscript, a novel fractional-order chaotic model has been investigated. The characteristic dynamics of the model have been investigated using various tools such as Lyapunov dynamics, bifurcation diagrams, equilibrium point analysis, Kaplan York dimension, existence and uniqueness of solution. The Lyapunov spectrum, bifurcation diagrams and attractors are discussed over a range of fractional order of 0.8 to 1. The considered system is synchronized by using a novel technique quad compound combination anti-synchronization using two control methods, viz. nonlinear and adaptive sliding mode technique. The obtained results of synchronization are compared with some existing literature and also illustrated its application in secure communication.
引用
收藏
页码:1729 / 1742
页数:14
相关论文
共 41 条
  • [1] Baleanu D, 2020, ADV DIFF EQ, V2020, P1, DOI DOI 10.1186/s13661-019-01311-5
  • [2] A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative
    Baleanu, Dumitru
    Jajarmi, Amin
    Mohammadi, Hakimeh
    Rezapour, Shahram
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [3] The fractional features of a harmonic oscillator with position-dependent mass
    Baleanu, Dumitru
    Jajarmi, Amin
    Sajjadi, Samaneh Sadat
    Asad, Jihad H.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (05)
  • [4] ONE PARAMETER BIFURCATION DIAGRAM FOR CHUAS CIRCUIT
    BROUCKE, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (02): : 208 - 209
  • [5] Analysis of fractional differential equations
    Diethelm, K
    Ford, NJ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) : 229 - 248
  • [6] Difference Synchronization of Identical and Nonidentical Chaotic and Hyperchaotic Systems of Different Orders Using Active Backstepping Design
    Dongmo, Eric Donald
    Ojo, Kayode Stephen
    Woafo, Paul
    Njah, Abdulahi Ndzi
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (05):
  • [7] COMPARISON OF DIFFERENT METHODS FOR COMPUTING LYAPUNOV EXPONENTS
    GEIST, K
    PARLITZ, U
    LAUTERBORN, W
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (05): : 875 - 893
  • [8] Analytical and numerical solutions of mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations
    Inan, Bilge
    Osman, Mohamed S.
    Turgut, A. K.
    Baleanu, Dumitru
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2588 - 2600
  • [9] The synchronization of chaotic systems applying the parallel synchronization method
    Karimi, Sohrab
    Effati, Sohrab
    Ghane, F. H.
    [J]. PHYSICA SCRIPTA, 2019, 94 (10)
  • [10] Khan AH, 2020, SMART INNOV SYST TEC, V169, P1, DOI [10.1007/s41870-020-00495-9, 10.1007/978-981-15-1616-0_1]