Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control

被引:63
|
作者
Cai, Zhihao [1 ]
Lou, Jiang [1 ]
Zhao, Jiang [1 ]
Wu, Kun [2 ]
Liu, Ningjun [1 ]
Wang, Ying Xun [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Flying Coll, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadrotor; Trajectory tracking; Active disturbance rejection control; Chaotic grey wolf optimization (CGWO); Virtual target guidance; Obstacle avoidance; VEHICLE; DESIGN; LINEARIZATION; OBSERVER;
D O I
10.1016/j.ymssp.2019.03.035
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a new active disturbance rejection control (ADRC) scheme based on swarm intelligent method is proposed for quadrotors to achieve trajectory tracking and obstacle avoidance. First, the finite-time convergent extended state observer (FTCESO) is designed to enhance the performance of ADRC controller. Then, the chaotic grey wolf optimization (CGWO) algorithm is developed with chaotic initialization and chaotic search to obtain the optimal parameters of attitude and position controllers. Further, a novel virtual target guidance approach is proposed to achieve obstacle avoidance for quadrotors. Comparative simulations are presented to demonstrate the effectiveness and robustness of the CGWO-based ADRC scheme and the virtual target guidance approach. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:636 / 654
页数:19
相关论文
共 50 条
  • [21] Precise Trajectory Tracking for UAV Based on Active Disturbance Rejection Control
    Zhang, Xiaofeng
    Wang, Honglun
    Shao, Xingling
    Liu, Chang
    FOURTH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (CCAIS 2015), 2015, : 464 - 469
  • [22] Event-triggered active disturbance rejection trajectory tracking control for a quadrotor unmanned aerial vehicle
    Xu, Lin -Xing
    Wang, Yu-Long
    Wang, Fei
    Long, Yue
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 449
  • [23] Active Disturbance Rejection Control of Quadrotor UAV based on Whale Optimization Algorithm
    Liu, Xinpeng
    Gao, Qiang
    Ji, Yuehui
    Song, Yu
    Liu, Junjie
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 351 - 356
  • [24] Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance
    Zhao, Chunhui
    Wang, Dong
    Hu, Jinwen
    Pan, Quan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (04) : 1379 - 1400
  • [25] Distributed Active Disturbance Rejection Formation Tracking Control for Quadrotor UAVs
    Xu, Lin-Xing
    Wang, Yu-Long
    Wang, Xiaofan
    Peng, Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (08) : 4678 - 4689
  • [26] Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance
    Chunhui Zhao
    Dong Wang
    Jinwen Hu
    Quan Pan
    Journal of Systems Science and Complexity, 2021, 34 : 1379 - 1400
  • [27] Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance
    ZHAO Chunhui
    WANG Dong
    HU Jinwen
    PAN Quan
    JournalofSystemsScience&Complexity, 2021, 34 (04) : 1379 - 1400
  • [28] Nonlinear Model Predictive Control on SE(3) for Quadrotor Trajectory Tracking and Obstacle Avoidance
    Pereira, Jean C.
    Leite, Valter J. S.
    Raffo, Guilherme, V
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2019, : 155 - 160
  • [29] Path tracking for evasive collision avoidance based on active disturbance rejection control
    Zhao, Youqun
    Wang, Jian
    Ji, Xuewu
    Li, Bo
    Tongji Daxue Xuebao/Journal of Tongji University, 2015, 43 (08): : 1200 - 1204
  • [30] Spatial trajectory tracking control for unmanned airships based on active disturbance rejection control
    Lou, Wenjie
    Zhu, Ming
    Guo, Xiao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2019, 233 (06) : 2231 - 2240