The edge-preservation multi-classifier relearning framework for the classification of high-resolution remotely sensed imagery

被引:18
作者
Han, Xiaopeng [1 ]
Huang, Xin [1 ,2 ]
Li, Jiayi [2 ]
Li, Yansheng [2 ]
Yang, Michael Ying [3 ]
Gong, Jianya [2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
[3] Univ Twente, Dept Earth Observat Sci EOS, Enschede, Netherlands
基金
中国国家自然科学基金;
关键词
High spatial resolution; Spatial features; Landscape metric; Tri-training; classification post-processing (CPP); WAVELET TRANSFORM; SENSING IMAGES; INFORMATION; EXTRACTION; LANDSCAPE; FEATURES; SCALE;
D O I
10.1016/j.isprsjprs.2018.02.009
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy. (C) 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 73
页数:17
相关论文
共 50 条
[1]   Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks [J].
Alshehhi, Rasha ;
Marpu, Prashanth Reddy ;
Woon, Wei Lee ;
Dalla Mura, Mauro .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 130 :139-149
[2]  
[Anonymous], 2016, PATTERN RECOGNIT
[3]  
[Anonymous], 2017, ENV POLLUT, DOI DOI 10.1016/J.ENVP0L.2017.10.126
[4]  
[Anonymous], 2017, IEEE T CYBERN
[5]  
[Anonymous], 2011, ENVIRON, DOI DOI 10.1016/J.RSE.2015.12.008
[6]  
[Anonymous], ISPRS J PHOTOGRAMM R
[7]   Canny edge detection enhancement by scale multiplication [J].
Bao, P ;
Zhang, L ;
Wu, XL .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (09) :1485-U1
[8]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[9]   Classification and feature extraction for remote sensing images from urban areas based on morphological transformations [J].
Benediktsson, JA ;
Pesaresi, M ;
Arnason, K .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :1940-1949
[10]   Remote sensing image fusion via wavelet transform and sparse representation [J].
Cheng, Jian ;
Liu, Haijun ;
Liu, Ting ;
Wang, Feng ;
Li, Hongsheng .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 104 :158-173