Object Memory Transformer for Object Goal Navigation

被引:15
作者
Fukushima, Rui [1 ]
Ota, Kei [2 ,3 ]
Kanezaki, Asako [2 ]
Sasaki, Yoko [1 ]
Yoshiyasu, Yusuke [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tokyo, Japan
[2] Tokyo Inst Technol, Tokyo, Japan
[3] Mitsubishi Electr Corp, Informat Technol R&D Ctr, Yokohama, Kanagawa, Japan
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022 | 2022年
关键词
D O I
10.1109/ICRA46639.2022.9812027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a reinforcement learning method for object goal navigation (ObjNav) where an agent navigates in 3D indoor environments to reach a target object based on long-term observations of objects and scenes. To this end, we propose Object Memory Transformer (OMT) that consists of two key ideas: 1) Object-Scene Memory (OSM) that enables to store long-term scenes and object semantics, and 2) Transformer that attends to salient objects in the sequence of previously observed scenes and objects stored in OSM. This mechanism allows the agent to efficiently navigate in the indoor environment without prior knowledge about the environments, such as topological maps or 3D meshes. To the best of our knowledge, this is the first work that uses a long-term memory of object semantics in a goal-oriented navigation task. Experimental results conducted on the AI2-THOR dataset show that OMT outperforms previous approaches in navigating in unknown environments. In particular, we show that utilizing the long-term object semantics information improves the efficiency of navigation.
引用
收藏
页码:11288 / 11294
页数:7
相关论文
共 31 条
  • [1] Anderson P., 2018, CoRR abs/1807.06757
  • [2] Badia AP, 2020, PR MACH LEARN RES, V119
  • [3] Carion N., 2020, EUROPEAN C COMPUTER, V12346, P213, DOI 10.1007/978-3-030-58452-8_13
  • [4] Visual Object Search by Learning Spatial Context
    Druon, Raphael
    Yoshiyasu, Yusuke
    Kanezaki, Asako
    Watt, Alassane
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 1279 - 1286
  • [5] Du Heming, 2021, ICLR
  • [6] Scene Memory Transformer for Embodied Agents in Long-Horizon Tasks
    Fang, Kuan
    Toshev, Alexander
    Li Fei-Fei
    Savarese, Silvio
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 538 - 547
  • [7] Graves A., 2014, Neural turing machines
  • [8] Hybrid computing using a neural network with dynamic external memory
    Graves, Alex
    Wayne, Greg
    Eynolds, Malcolm R.
    Harley, Tim
    Danihelka, Ivo
    Grabska-Barwinska, Agnieszka
    Colmenarejo, Sergio Gomez
    Grefenstette, Edward
    Amalho, Tiago R.
    Agapiou, John
    Badia, Adria Puigdomenech
    Hermann, Karl Moritz
    Zwols, Yori
    Strovski, Georg O.
    Ain, Adam C.
    King, Helen
    Summerfield, Christopher
    Lunsom, Phil B.
    Kavukcuoglu, Koray
    Hassabis, Demis
    [J]. NATURE, 2016, 538 (7626) : 471 - +
  • [9] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [10] Heming Du, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12352), P19, DOI 10.1007/978-3-030-58571-6_2