Barrier options and their static hedges: simple derivations and extensions

被引:16
作者
Poulsen, Rolf [1 ]
机构
[1] Univ Copenhagen, Dept Appl Math & Stat, Inst Math Sci, DK-2100 Copenhagen, Denmark
关键词
barrier option; static hedging;
D O I
10.1080/14697680600690331
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We use a reflection result to give simple proofs of (well-known) valuation formulas and static hedge portfolio constructions for zero-rebate single-barrier options in the Black-Scholes model. We then illustrate how to extend the ideas to other model types giving (at least) easy-to-program numerical methods and other option types such as options with rebates, and double-barrier and lookback options.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 25 条
  • [11] Derman E., 1995, The Journal of Derivatives, V2, P78, DOI [10.3905/jod.1995.407927, DOI 10.3905/JOD.1995.407927]
  • [12] ENGELMANN B, 2006, BETTER ITS REPUTATIO
  • [13] JEANBLANC M, 2005, MATH METHODS FINANCI
  • [14] Joshi MS., 2003, The concepts and practice of mathematical finance
  • [15] KARATZAS I, 1992, BROWNIAN MOTION STOC
  • [16] Kunitomo N., 1992, MATH FINANC, V2, P275, DOI DOI 10.1111/J.1467-9965.1992.TB00033.X
  • [17] KUNITOMO N, 1992, MATH FINANC, V10, P459
  • [18] A simple approach for pricing barrier options with time-dependent parameters
    Lo, CF
    Lee, HC
    Hui, CH
    [J]. QUANTITATIVE FINANCE, 2003, 3 (02) : 98 - 107
  • [19] MARUHN JH, 2005, ROBUST OPTIMIZATION, P127
  • [20] THEORY OF RATIONAL OPTION PRICING
    MERTON, RC
    [J]. BELL JOURNAL OF ECONOMICS, 1973, 4 (01): : 141 - 183