PLANAR STANDING WAVEFRONTS IN THE FITZHUGH-NAGUMO EQUATIONS

被引:22
|
作者
Chen, Chao-Nien [1 ]
Kung, Shih-Yin [1 ]
Morita, Yoshihisa [2 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
[2] Ryukoku Univ, Dept Appl Math & Informat, Seta 5202194, Japan
基金
日本学术振兴会;
关键词
FitzHugh-Nagumo equations; standing wavefront; variational method; stability; MULTIDIMENSIONAL STABILITY; MICROPHASE SEPARATION; TRAVELING-WAVES; PULSE SOLUTIONS; DIFFUSION; SYSTEM; EXISTENCE; DYNAMICS; PATTERNS; BEHAVIOR;
D O I
10.1137/130907793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the investigation of standing waves for the FitzHugh-Nagumo equations, a well-known reaction-diffusion model of activator-inhibitor type for exhibiting Turing patterns. Similar to the Allen-Cahn equation, a balanced condition for the potential induced from the reaction terms is imposed in studying the existence of planar standing wavefronts. Furthermore, the diffusion rates of activator and inhibitor must be in an appropriate range to ensure the existence of such waves. For the standing front with a symmetry property, an application of the comparison argument yields a uniqueness result. Moreover, the asymptotic stability of wavefronts up to a phase shift is analyzed.
引用
收藏
页码:657 / 690
页数:34
相关论文
共 50 条
  • [41] EXISTENCE AND REGULARITY FOR THE FITZHUGH-NAGUMO EQUATIONS WITH INHOMOGENEOUS BOUNDARY-CONDITIONS
    JACKSON, DE
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (03) : 201 - 216
  • [42] STOCHASTIC FITZHUGH-NAGUMO SYSTEMS WITH DELAY
    Xu, Lu
    Yan, Weiping
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 1079 - 1103
  • [43] On the bidomain problem with FitzHugh-Nagumo transport
    Hieber, Matthias
    Pruess, Jan
    ARCHIV DER MATHEMATIK, 2018, 111 (03) : 313 - 327
  • [44] Near-Pulse Solutions of the FitzHugh-Nagumo Equations on Cylindrical Surfaces
    Talidou, A.
    Burchard, A.
    Sigal, I. M.
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (03)
  • [45] On a modification of the FitzHugh-Nagumo neuron model
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 443 - 461
  • [46] On a Modification of the FitzHugh-Nagumo Neuron Model
    Glyzin, S. D.
    Kolesov, A. Yu
    Rozov, N. Kh
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (03) : 443 - 461
  • [47] An inverse problem for a generalized FitzHugh-Nagumo type system
    Cardoulis, Laure
    Cristofol, Michel
    APPLICABLE ANALYSIS, 2024, 103 (11) : 1990 - 2002
  • [48] Synchronization and chimeras in a network of photosensitive FitzHugh-Nagumo neurons
    Hussain, Iqtadar
    Jafari, Sajad
    Ghosh, Dibakar
    Perc, Matjaz
    NONLINEAR DYNAMICS, 2021, 104 (03) : 2711 - 2721
  • [49] Actuating mechanical arms coupled to an array of FitzHugh-Nagumo neuron circuits
    Ngongiah, Isidore Komofor
    Ramakrishnan, Balamurali
    Kuiate, Gaetan Fautso
    Tagne, Raphael
    Kingni, Sifeu Takougang
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (02) : 285 - 299
  • [50] Traveling Pulse Solutions for the Discrete FitzHugh-Nagumo System
    Hupkes, Hermen Jan
    Sandstede, Bjoern
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03): : 827 - 882