A Heterogeneous Edge-Fog Environment Supporting Digital Twins for Remote Inspections

被引:4
|
作者
da Silva, Luiz A. Z. [1 ]
Vidal, Vinicius F. [1 ]
Honorio, Leonardo M. [1 ]
Dantas, Mario A. R. [2 ]
Pinto, Milena Faria [3 ]
Capretz, Miriam [4 ]
机构
[1] Univ Fed Juiz de Fora, Dept Elect Engn, BR-36036900 Juiz De Fora, Brazil
[2] Univ Fed Juiz de Fora, Dept Comp Sci, BR-36036900 Juiz De Fora, Brazil
[3] Fed Ctr Technol Educ Rio de Janeiro, Dept Elect Engn, BR-20271110 Rio De Janeiro, Brazil
[4] Western Univ, Fac Engn, Dept Elect & Comp Engn, London, ON N6G 1G8, Canada
关键词
fog-edge computing; distribuited 3D reconstruction; heterogeneous environment; digital twins; remote inspection; RECONSTRUCTION; LOCALIZATION; SLAM;
D O I
10.3390/s20185296
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The increase in the development of digital twins brings several advantages to inspection and maintenance, but also new challenges. Digital models capable of representing real equipment for full remote inspection demand the synchronization, integration, and fusion of several sensors and methodologies such as stereo vision, monocular Simultaneous Localization and Mapping (SLAM), laser and RGB-D camera readings, texture analysis, filters, thermal, and multi-spectral images. This multidimensional information makes it possible to have a full understanding of given equipment, enabling remote diagnosis. To solve this problem, the present work uses an edge-fog-cloud architecture running over a publisher-subscriber communication framework to optimize the computational costs and throughput. In this approach, each process is embedded in an edge node responsible for prepossessing a given amount of data that optimizes the trade-off of processing capabilities and throughput delays. All information is integrated with different levels of fog nodes and a cloud server to maximize performance. To demonstrate this proposal, a real-time 3D reconstruction problem using moving cameras is shown. In this scenario, a stereo and RDB-D cameras run over edge nodes, filtering, and prepossessing the initial data. Furthermore, the point cloud and image registration, odometry, and filtering run over fog clusters. A cloud server is responsible for texturing and processing the final results. This approach enables us to optimize the time lag between data acquisition and operator visualization, and it is easily scalable if new sensors and algorithms must be added. The experimental results will demonstrate precision by comparing the results with ground-truth data, scalability by adding further readings and performance.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 1 条
  • [1] Reference Architecture for Running Computationally Intensive Physics-Based Digital Twins of Heavy Equipment in a Heterogeneous Execution Environment
    Zhidchenko, Victor
    Startcev, Egor
    Handroos, Heikki
    IEEE ACCESS, 2022, 10 : 54164 - 54184