PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools

被引:17
|
作者
Hu, James C. [1 ]
Sherlock, Gavin [2 ]
Siegele, Deborah A. [3 ]
Aleksander, Suzanne A. [1 ]
Ball, Catherine A. [2 ]
Demeter, Janos [2 ]
Gouni, Sushanth [1 ]
Holland, Timothy A. [4 ]
Karp, Peter D. [4 ]
Lewis, John E. [1 ]
Liles, Nathan M. [1 ]
McIntosh, Brenley K. [1 ]
Mi, Huaiyu [5 ]
Muruganujan, Anushya [5 ]
Wymore, Farrell [2 ]
Thomas, Paul D. [5 ]
机构
[1] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[2] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[3] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[4] SRI Int, Ctr Artificial Intelligence, Menlo Pk, CA 94025 USA
[5] Univ So Calif, Dept Prevent Med, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院;
关键词
ESCHERICHIA-COLI; GENE-EXPRESSION; DATA SETS; SEQUENCE; ONTOLOGY; NETWORK;
D O I
10.1093/nar/gkt1203
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PortEco (http://porteco.org) aims to collect, curate and provide data and analysis tools to support basic biological research in Escherichia coli (and eventually other bacterial systems). PortEco is implemented as a 'virtual' model organism database that provides a single unified interface to the user, while integrating information from a variety of sources. The main focus of PortEco is to enable broad use of the growing number of high-throughput experiments available for E. coli, and to leverage community annotation through the EcoliWiki and GONUTS systems. Currently, PortEco includes curated data from hundreds of genome-wide RNA expression studies, from high-throughput phenotyping of single-gene knockouts under hundreds of annotated conditions, from chromatin immunoprecipitation experiments for tens of different DNA-binding factors and from ribosome profiling experiments that yield insights into protein expression. Conditions have been annotated with a consistent vocabulary, and data have been consistently normalized to enable users to find, compare and interpret relevant experiments. PortEco includes tools for data analysis, including clustering, enrichment analysis and exploration via genome browsers. PortEco search and data analysis tools are extensively linked to the curated gene, metabolic pathway and regulation content at its sister site, EcoCyc.
引用
收藏
页码:D677 / D684
页数:8
相关论文
共 50 条
  • [11] Exploring the Potential of Venom from Nasonia vitripennis as Therapeutic Agent with High-Throughput Screening Tools
    Danneels, Ellen L.
    Formesyn, Ellen M.
    de Graaf, Dirk C.
    TOXINS, 2015, 7 (06): : 2051 - 2070
  • [12] BAYESIAN MULTISTUDY FACTOR ANALYSIS FOR HIGH-THROUGHPUT BIOLOGICAL DATA
    De Vito, Roberta
    Bellio, Ruggero
    Trippa, Lorenzo
    Parmigiani, Giovanni
    ANNALS OF APPLIED STATISTICS, 2021, 15 (04) : 1723 - 1741
  • [13] A Mixture Modeling Framework for Differential Analysis of High-Throughput Data
    Taslim, Cenny
    Lin, Shili
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
  • [14] High-throughput functional genomics: A (myco)bacterial perspective
    Winkler, Kristy R.
    Mizrahi, Valerie
    Warner, Digby F.
    De Wet, Timothy J.
    MOLECULAR MICROBIOLOGY, 2023, 120 (02) : 141 - 158
  • [15] High-throughput functional trait testing for bacterial pathogens
    Stromberg, Zachary R.
    Phillips, Shelby M. B.
    Omberg, Kristin M.
    Hess, Becky M.
    Torres, Alfredo G.
    MSPHERE, 2023, 8 (05)
  • [16] Graphic Encoding of Macromolecules for Efficient High-Throughput Analysis
    Estrada, Trilce
    Benson, Jeremy
    Carrillo-Cabada, Hector
    Razavi, Asghar M.
    Cuendet, Michel A.
    Weinstein, Harel
    Deelman, Ewa
    Taufer, Michela
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 315 - 324
  • [17] Computational approaches for high-throughput single-cell data analysis
    Todorov, Helena
    Saeys, Yvan
    FEBS JOURNAL, 2019, 286 (08) : 1451 - 1467
  • [18] Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data
    Reshetova, Polina
    Smilde, Age K.
    van Kampen, Antoine H. C.
    Westerhuis, Johan A.
    BMC SYSTEMS BIOLOGY, 2014, 8 : S2
  • [19] Specific Biomarkers: Detection of Cancer Biomarkers Through High-Throughput Transcriptomics Data
    Du, Wei
    Cao, Zhongbo
    Wang, Yan
    Zhou, Fengfeng
    Pang, Wei
    Chen, Xin
    Tian, Yuan
    Liang, Yanchun
    COGNITIVE COMPUTATION, 2015, 7 (06) : 652 - 666
  • [20] A Versatile and Efficient High-Throughput Cloning Tool for Structural Biology
    Geertsma, Eric R.
    Dutzler, Raimund
    BIOCHEMISTRY, 2011, 50 (15) : 3272 - 3278