PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools

被引:17
|
作者
Hu, James C. [1 ]
Sherlock, Gavin [2 ]
Siegele, Deborah A. [3 ]
Aleksander, Suzanne A. [1 ]
Ball, Catherine A. [2 ]
Demeter, Janos [2 ]
Gouni, Sushanth [1 ]
Holland, Timothy A. [4 ]
Karp, Peter D. [4 ]
Lewis, John E. [1 ]
Liles, Nathan M. [1 ]
McIntosh, Brenley K. [1 ]
Mi, Huaiyu [5 ]
Muruganujan, Anushya [5 ]
Wymore, Farrell [2 ]
Thomas, Paul D. [5 ]
机构
[1] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[2] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[3] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[4] SRI Int, Ctr Artificial Intelligence, Menlo Pk, CA 94025 USA
[5] Univ So Calif, Dept Prevent Med, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院;
关键词
ESCHERICHIA-COLI; GENE-EXPRESSION; DATA SETS; SEQUENCE; ONTOLOGY; NETWORK;
D O I
10.1093/nar/gkt1203
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PortEco (http://porteco.org) aims to collect, curate and provide data and analysis tools to support basic biological research in Escherichia coli (and eventually other bacterial systems). PortEco is implemented as a 'virtual' model organism database that provides a single unified interface to the user, while integrating information from a variety of sources. The main focus of PortEco is to enable broad use of the growing number of high-throughput experiments available for E. coli, and to leverage community annotation through the EcoliWiki and GONUTS systems. Currently, PortEco includes curated data from hundreds of genome-wide RNA expression studies, from high-throughput phenotyping of single-gene knockouts under hundreds of annotated conditions, from chromatin immunoprecipitation experiments for tens of different DNA-binding factors and from ribosome profiling experiments that yield insights into protein expression. Conditions have been annotated with a consistent vocabulary, and data have been consistently normalized to enable users to find, compare and interpret relevant experiments. PortEco includes tools for data analysis, including clustering, enrichment analysis and exploration via genome browsers. PortEco search and data analysis tools are extensively linked to the curated gene, metabolic pathway and regulation content at its sister site, EcoCyc.
引用
收藏
页码:D677 / D684
页数:8
相关论文
共 50 条
  • [1] Exploring dinoflagellate biology with high-throughput proteomics
    Morse, David
    Tse, Sirius P. K.
    Lo, Samuel C. L.
    HARMFUL ALGAE, 2018, 75 : 16 - 26
  • [2] Bacterial Microcolonies in Gel Beads for High-Throughput Screening of Libraries in Synthetic Biology
    Duarte, Jose M.
    Barbier, Icvara
    Schaerli, Yolanda
    ACS SYNTHETIC BIOLOGY, 2017, 6 (11): : 1988 - 1995
  • [3] Precise, High-throughput Analysis of Bacterial Growth
    Kurokawa, Masaomi
    Ying, Bei-Wen
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (127):
  • [4] Quantitative analysis of high-throughput biological data
    Juan, Hsueh-Fen
    Huang, Hsuan-Cheng
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2023, 13 (04)
  • [5] Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data
    Yang, Laurence
    Tan, Justin
    O'Brien, Edward J.
    Monk, Jonathan M.
    Kim, Donghyuk
    Li, Howard J.
    Charusanti, Pep
    Ebrahim, Ali
    Lloyd, Colton J.
    Yurkovich, James T.
    Du, Bin
    Draeger, Andreas
    Thomas, Alex
    Sun, Yuekai
    Saunders, Michael A.
    Palsson, Bernhard O.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (34) : 10810 - 10815
  • [6] Protein microarrays: high-throughput tools for proteomics
    Stoevesandt, Oda
    Taussig, Michael J.
    He, Mingyue
    EXPERT REVIEW OF PROTEOMICS, 2009, 6 (02) : 145 - 157
  • [7] High-Throughput Analysis of Gene Function in the Bacterial Predator Bdellovibrio bacteriovorus
    Duncan, Miles C.
    Gillette, Rebecca K.
    Maglasang, Micah A.
    Corn, Elizabeth A.
    Tai, Albert K.
    Lazinski, David W.
    Shanks, Robert M. Q.
    Kadouri, Daniel E.
    Camilli, Andrew
    MBIO, 2019, 10 (03):
  • [8] High-Throughput Screening for Bacterial Glycosyltransferase Inhibitors
    El Qaidi, Samir
    Zhu, Congrui
    McDonald, Peter
    Roy, Anuradha
    Maity, Pradip Kumar
    Rane, Digamber
    Perera, Chamani
    Hardwidge, Philip R.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2018, 8
  • [9] Reproducibility of High-Throughput Plate-Reader Experiments in Synthetic Biology
    Chavez, Michael
    Ho, Jonathan
    Tan, Cheemeng
    ACS SYNTHETIC BIOLOGY, 2017, 6 (02): : 375 - 380
  • [10] Machine learning in computational biology to accelerate high-throughput protein expression
    Sastry, Anand
    Monk, Jonathan
    Tegel, Hanna
    Uhlen, Mathias
    Palsson, Bernhard O.
    Rockberg, Johan
    Brunk, Elizabeth
    BIOINFORMATICS, 2017, 33 (16) : 2487 - 2495