Modeling T1 and T2 relaxation in bovine white matter

被引:22
|
作者
Barta, R. [1 ]
Kalantari, S. [1 ]
Laule, C. [2 ,3 ,4 ]
Vavasour, I. M. [2 ]
MacKay, A. L. [1 ,2 ]
Michal, C. A. [1 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada
[2] Univ British Columbia, Dept Radiol, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC V5Z 1M9, Canada
[4] Univ British Columbia, Int Collaborat Repair Discoveries ICORD, Vancouver, BC V5Z 1M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bovine white matter; T-1 and T-2 relaxation; Brain; Myelin water; Exchange; Inversion pulse bandwidth; NUCLEAR-MAGNETIC-RESONANCE; LEAST-SQUARES ALGORITHM; SPIN-SPIN RELAXATION; MYELIN WATER; HUMAN BRAIN; IN-VIVO; MULTIPLE-SCLEROSIS; INVERSION-RECOVERY; MULTICOMPONENT T-2; PERIPHERAL-NERVE;
D O I
10.1016/j.jmr.2015.08.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The fundamental basis of T-1 and T-2 contrast in brain MRI is not well understood; recent literature contains conflicting views on the nature of relaxation in white matter (WM). We investigated the effects of inversion pulse bandwidth on measurements of T-1 and T-2 in WM. Hybrid inversion-recovery/Carr-Purcell-Meiboom-Gill experiments with broad or narrow bandwidth inversion pulses were applied to bovine WM in vitro. Data were analysed with the commonly used 1D-non-negative least squares (NNLS) algorithm, a 2D-NNLS algorithm, and a four-pool model which was based upon microscopically distinguishable WM compartments (myelin non-aqueous protons, myelin water, non-myelin nonaqueous protons and intra/extracellular water) and incorporated magnetization exchange between adjacent compartments. 1D-NNLS showed that different T-2 components had different T-1 behaviours and yielded dissimilar results for the two inversion conditions. 2D-NNLS revealed significantly more complicated T-1/T-2 distributions for narrow bandwidth than for broad bandwidth inversion pulses. The four-pool model fits allow physical interpretation of the parameters, fit better than the NNLS techniques, and fits results from both inversion conditions using the same parameters. The results demonstrate that exchange cannot be neglected when analysing experimental inversion recovery data from WM, in part because it can introduce exponential components having negative amplitude coefficients that cannot be correctly modeled with nonnegative fitting techniques. While assignment of an individual T-1 to one particular pool is not possible, the results suggest that under carefully controlled experimental conditions the amplitude of an apparent short T-1 component might be used to quantify myelin water. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [41] Normal Tissue Quantitative T1 and T2☆ MRI Relaxation Time Responses to Hypercapnic and Hyperoxic Gases
    Winter, Jeff D.
    Estrada, Marvin
    Cheng, Hai-Ling Margaret
    ACADEMIC RADIOLOGY, 2011, 18 (09) : 1159 - 1167
  • [42] High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo
    de Graaf, Robin A.
    Brown, Peter B.
    McIntyre, Scott
    Nixon, Terence W.
    Behar, Kevin L.
    Rothman, Douglas L.
    MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) : 386 - 394
  • [43] Biexponential Longitudinal Relaxation in White Matter: Characterization and Impact on T1 Mapping with IR-FSE and MP2RAGE
    Rioux, James A.
    Levesque, Ives R.
    Rutt, Brian K.
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (06) : 2265 - 2277
  • [44] Long T2 water in multiple sclerosis:: What else can we learn from multi-echo T2 relaxation?
    Laule, Cornelia
    Vavasour, Irene M.
    Kolind, Shannon H.
    Traboulsee, Anthony L.
    Moore, G. R. Wayne
    Li, David K. B.
    MacKay, Alex L.
    JOURNAL OF NEUROLOGY, 2007, 254 (11) : 1579 - 1587
  • [45] Long T2 water in multiple sclerosis: What else can we learn from multi-echo T2 relaxation?
    C. Laule
    I. M. Vavasour
    S. H. Kolind
    A. L. Traboulsee
    G. R. W. Moore
    D. K. B. Li
    A. L. MacKay
    Journal of Neurology, 2007, 254 : 1579 - 1587
  • [46] Electroporation therapy for T1 and T2 oral tongue cancer
    Landstrom, Fredrik J.
    Nilsson, Christer O. S.
    Reizenstein, Johan A.
    Nordqvist, Kent
    Adamsson, Gun-Britt
    Lofgren, A. Lennart
    ACTA OTO-LARYNGOLOGICA, 2011, 131 (06) : 660 - 664
  • [47] Multicomponent T2 relaxation studies of the avian egg
    Mitsouras, Dimitris
    Mulkern, Robert V.
    Maier, Stephan E.
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (05) : 2156 - 2164
  • [48] Calibration of myocardial T2 and T1 against iron concentration
    Carpenter, John-Paul
    He, Taigang
    Kirk, Paul
    Roughton, Michael
    Anderson, Lisa J.
    de Noronha, Sofia V.
    Baksi, A. John
    Sheppard, Mary N.
    Porter, John B.
    Walker, J. Malcolm
    Wood, John C.
    Forni, Gianluca
    Catani, Gualtiero
    Matta, Gildo
    Fucharoen, Suthat
    Fleming, Adam
    House, Mike
    Black, Greg
    Firmin, David N.
    St Pierre, Timothy G.
    Pennell, Dudley J.
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2014, 16
  • [49] Paramagnetic nanoparticle T1 and T2 MRI contrast agents
    Xu, Wenlong
    Kattel, Krishna
    Park, Ja Young
    Chang, Yongmin
    Kim, Tae Jeong
    Lee, Gang Ho
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (37) : 12687 - 12700
  • [50] T1 and T2 alterations in the brains of patients with hepatic cirrhosis
    Vymazal, J
    Babis, M
    Brooks, RA
    Filip, K
    Dezortova, M
    Hrncarkova, H
    Hajek, M
    AMERICAN JOURNAL OF NEURORADIOLOGY, 1996, 17 (02) : 333 - 336