Potentiodynamics of the Zinc and Proton Storage in Disordered Sodium Vanadate for Aqueous Zn-Ion Batteries

被引:65
作者
Shan, Xiaoqiang [1 ]
Kim, SaeWon [1 ]
Abeykoon, A. M. Milinda [2 ]
Kwon, Gihan [2 ]
Olds, Daniel [2 ]
Teng, Xiaowei [1 ]
机构
[1] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA
[2] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
关键词
zinc storage; proton storage; sequential intercalation; synchrotron X-ray analysis; aqueous battery; MATERIALS CHEMISTRY; RECHARGEABLE LI; ENERGY-STORAGE; INTERCALATION; CATHODE; CHALLENGES; REDOX;
D O I
10.1021/acsami.0c15621
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A rechargeable Zn-ion battery is a promising aqueous system, where coinsertion of Zn2+ and H+ could address the obstacles of the sluggish ionic transport in cathode materials imposed by multivalent battery chemistry. However, there is a lack of fundamental understanding of this dual-ion transport, especially the potentiodynamics of the storage process. Here, a quantitative analysis of Zn+ and H+ transport in a disordered sodium vanadate (NaV3O8) cathode material has been reported. Collectively, synchrotron X-ray analysis shows that both Zn+ and H+ storages follow an intercalation storage mechanism in NaV3O8 and proceed in a sequential manner, where intercalations of 0.26 Zn+ followed by 0.24 H+ per vanadium atom occur during discharging, while reverse dynamics happens during charging. Such a unique and synergistic dual-ion sequential storage favors a high capacity (265 mA h g(-1)) and an energy density (221 W h kg(-1)) based on the NaV3O8 cathode and a great cycling life (a capacity retention of 78% after 2000 cycles) in Zn/NaV3O8 full cells.
引用
收藏
页码:54627 / 54636
页数:10
相关论文
共 64 条
[1]   Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Islam, Saiful ;
Pham, Duong Tung ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Baboo, Joseph Paul ;
Xiu, Zhiliang ;
Lee, Kug-Seung ;
Sun, Yang-Kook ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2017, 29 (04) :1684-1694
[2]   Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Gim, Jihyeon ;
Kim, Sungjin ;
Song, Jinju ;
Baboo, Joseph P. ;
Choi, Sun H. ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2015, 27 (10) :3609-3620
[3]   Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery [J].
Bin, Duan ;
Huo, Wangchen ;
Yuan, Yingbo ;
Huang, Jianhang ;
Liu, Yao ;
Zhang, Yuxin ;
Dong, Fan ;
Wang, Yonggang ;
Xia, Yongyao .
CHEM, 2020, 6 (04) :968-984
[4]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[5]   Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges [J].
Canepa, Pieremanuele ;
Gautam, Gopalakrishnan Sai ;
Hannah, Daniel C. ;
Malik, Rahul ;
Liu, Miao ;
Gallagher, Kevin G. ;
Persson, Kristin A. ;
Ceder, Gerbrand .
CHEMICAL REVIEWS, 2017, 117 (05) :4287-4341
[6]   Hydrophobic Organic-Electrolyte-Protected Zinc Anodes for Aqueous Zinc Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Deng, Tao ;
Li, Qin ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (43) :19292-19296
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]   KVOPO4: A New High Capacity Multielectron Na-Ion Battery Cathode [J].
Ding, Jia ;
Lin, Yuh-Chieh ;
Liu, Jue ;
Rana, Jatinkumar ;
Zhang, Hanlei ;
Zhou, Hui ;
Chu, Iek-Heng ;
Wiaderek, Kamila M. ;
Omenya, Fredrick ;
Chernova, Natasha A. ;
Chapman, Karena W. ;
Piper, Louis F. J. ;
Ong, Shyue Ping ;
Whittingham, M. Stanley .
ADVANCED ENERGY MATERIALS, 2018, 8 (21)
[9]   Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide [J].
Ding, Junwei ;
Du, Zhiguo ;
Gu, Linqing ;
Li, Bin ;
Wang, Lizhen ;
Wang, Shiwen ;
Gong, Yongji ;
Yang, Shubin .
ADVANCED MATERIALS, 2018, 30 (26)
[10]   Battery energy storage technology for power systems-An overview [J].
Divya, K. C. ;
Ostergaard, Jacob .
ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (04) :511-520