Anatase TiO2 deposited at low temperature by pulsing an electron cyclotron wave resonance plasma source

被引:7
作者
Dey, B. [1 ]
Bulou, S. [1 ]
Gaulain, T. [1 ]
Ravisy, W. [2 ]
Richard-Plouet, M. [2 ]
Goullet, A. [2 ]
Granier, A. [2 ]
Choquet, P. [1 ]
机构
[1] Luxembourg Inst Sci & Technol, Mat Res & Technol Dept, 5 Ave Hauts Fourneaux, L-4362 Esch Sur Alzette, Luxembourg
[2] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, 2 Rue Houssiniere,BP 32229, F-44322 Nantes, France
关键词
CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; PRESSURE; DIOXIDE; DESIGN; GROWTH;
D O I
10.1038/s41598-020-78956-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photocatalytic surfaces have the potentiality to respond to many of nowadays societal concerns such as clean H-2 generation, CO2 conversion, organic pollutant removal or virus inactivation. Despite its numerous superior properties, the wide development of TiO2 photocatalytic surfaces suffers from important drawbacks. Hence, the high temperature usually required (>450 degrees C) for the synthesis of anatase TiO2 is still a challenge to outreach. In this article, we report the development and optimisation of an ECWR-PECVD process enabling the deposition of anatase TiO2 thin films at low substrate temperature. Scanning of experimental parameters such as RF power and deposition time was achieved in order to maximise photocatalytic activity. The careful selection of the deposition parameters (RF power, deposition time and plasma gas composition) enabled the synthesis of coatings exhibiting photocatalytic activity comparable to industrial references such as P25 Degussa and Pilkington Activ at a substrate temperature below 200 degrees C. In addition, to further decrease the substrate temperature, the interest of pulsing the plasma RF source was investigated. Using a duty cycle of 50%, it is thus possible to synthesise photocatalytic anatase TiO2 thin films at a substrate temperature below 115 degrees C with a deposition rate around 10 nm/min.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Pulsed-radio frequency plasma enhanced chemical vapour deposition of low temperature silicon nitride for thin film transistors [J].
Ahnood, Arman ;
Suzuki, Yuji ;
Madan, Arun ;
Nathan, Arokia .
THIN SOLID FILMS, 2012, 520 (15) :4831-4834
[2]   Fundamentals of pulsed plasmas for materials processing [J].
Anders, A .
SURFACE & COATINGS TECHNOLOGY, 2004, 183 (2-3) :301-311
[3]  
[Anonymous], 2018, SCI REP, DOI DOI 10.1038/s41598-018-27526-7
[4]   Significance of a Noble Metal Nanolayer on the UV and Visible Light Photocatalytic Activity of Anatase TiO2 Thin Films Grown from a Scalable PECVD/PVD Approach [J].
Baba, Kamal ;
Bulou, Simon ;
Quesada-Gonzalez, Miguel ;
Bonot, Sebastien ;
Collard, Delphine ;
Boscher, Nicolas D. ;
Choquet, Patrick .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (47) :41200-41209
[5]   Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma [J].
Baba, Kamal ;
Bulou, Simon ;
Choquet, Patrick ;
Boscher, Nicolas D. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13733-13741
[6]   Stress reduction in silicon dioxide layers by pulsing an oxygen/silane helicon diffusion plasma [J].
Charles, C ;
Boswell, RW .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (01) :350-354
[7]   SIO2 DEPOSITION FROM OXYGEN SILANE PULSED HELICON DIFFUSION PLASMAS [J].
CHARLES, C ;
BOSWELL, RW ;
KUWAHARA, H .
APPLIED PHYSICS LETTERS, 1995, 67 (01) :40-42
[8]   Effect of substrate conditions on the plasma beam deposition of amorphous hydrogenated carbon [J].
Gielen, JWAM ;
Kessels, WMM ;
vandeSanden, MCM ;
Schram, DC .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (05) :2643-2654
[9]   TiO2 photocatalysis:: A historical overview and future prospects [J].
Hashimoto, K ;
Irie, H ;
Fujishima, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (12) :8269-8285
[10]   Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects [J].
Horikoshi, Satoshi ;
Serpone, Nick .
CATALYSIS TODAY, 2020, 340 :334-346