Point-Sampling Method Based on 3D U-Net Architecture to Reduce the Influence of False Positive and Solve Boundary Blur Problem in 3D CT Image Segmentation

被引:9
|
作者
Li, Chen [1 ]
Chen, Wei [1 ]
Tan, Yusong [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha 410073, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 19期
关键词
render; 3D U-Net; medical image; segmentation; artificial intelligence; deep learning; attention mechanism; deep supervision; false positive classification; NEURAL-NETWORKS;
D O I
10.3390/app10196838
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Malignant lesions are a huge threat to human health and have a high mortality rate. Locating the contour of organs is a preparation step, and it helps doctors diagnose correctly. Therefore, there is an urgent clinical need for a segmentation model specifically designed for medical imaging. However, most current medical image segmentation models directly migrate from natural image segmentation models, thus ignoring some characteristic features for medical images, such as false positive phenomena and the blurred boundary problem in 3D volume data. The research on organ segmentation models for medical images is still challenging and demanding. As a consequence, we redesign a 3D convolutional neural network (CNN) based on 3D U-Net and adopted the render method from computer graphics for 3D medical images segmentation, named Render 3D U-Net. This network adapts a subdivision-based point-sampling method to replace the original upsampling method for rendering high-quality boundaries. Besides, Render 3D U-Net integrates the point-sampling method into 3D ANU-Net architecture under deep supervision. Meanwhile, to reduce false positive phenomena in clinical diagnosis and to achieve more accurate segmentation, Render 3D U-Net specially designs a module for screening false positive. Finally, three public challenge datasets (MICCAI 2017 LiTS, MICCAI 2019 KiTS, and ISBI 2019 segTHOR) were selected as experiment datasets and to evaluate the performance on target organs. Compared with other models, Render 3D U-Net improved the performance on both overall organ and boundary in the CT image segmentation tasks, including in the liver, kidney, and heart.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Automatic Liver Segmentation with CT Images based on 3D U-net Deep Learning Approach
    Su, Ting-Yu
    Yang, Wei-Tse
    Cheng, Tsu-Chi
    He, Yi-Fei
    Fang, Yu-Hua
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [22] Dual Attention-Based 3D U-Net Liver Segmentation Algorithm on CT Images
    Zhang, Benyue
    Qiu, Shi
    Liang, Ting
    BIOENGINEERING-BASEL, 2024, 11 (07):
  • [23] Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net
    Wu, Yun
    Shen, Huaiyan
    Tan, Yaya
    Shi, Yucheng
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (10) : 1915 - 1922
  • [24] Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net
    Yun Wu
    Huaiyan Shen
    Yaya Tan
    Yucheng Shi
    International Journal of Computer Assisted Radiology and Surgery, 2022, 17 : 1915 - 1922
  • [25] Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images
    Woo, Boyeong
    Lee, Myungeun
    2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2021,
  • [26] CHOROID PLEXUS SEGMENTATION USING OPTIMIZED 3D U-NET
    Zhao, Li
    Feng, Xue
    Meyer, Craig H.
    Alsop, David C.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 381 - 384
  • [27] U-Net based automatic carotid plaque segmentation from 3D ultrasound images
    Zhou, Ran
    Ma, Wei
    Fenster, Aaron
    Ding, Mingyue
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [28] SEGMENTATION OF SPINAL SUBARACHNOID LUMEN WITH 3D ATTENTION U-NET
    Keles, Ayse
    Algin, Oktay
    Ozisik, Pinar Akdemir
    Sen, Baha
    Celebi, Fatih Vehbi
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2023, 23 (04)
  • [29] Segmentation of Liver Anatomy by Combining 3D U-Net Approaches
    Affane, Abir
    Kucharski, Adrian
    Chapuis, Paul
    Freydier, Samuel
    Lebre, Marie-Ange
    Vacavant, Antoine
    Fabijanska, Anna
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [30] A Bispectral 3D U-Net for Rotation Robustness in Medical Segmentation
    Chevalley, Arthur
    Oreiller, Valentin
    Fageot, Julien
    Prior, John O.
    Andrearczyk, Vincent
    Depeursinge, Adrien
    TOPOLOGY-AND GRAPH-INFORMED IMAGING INFORMATICS, TGI3 2024, 2025, 15239 : 43 - 54