Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway

被引:74
作者
Kelley, Elizabeth G. [1 ]
Murphy, Ryan P. [1 ]
Seppala, Jonathan E. [1 ]
Smart, Thomas P. [1 ]
Hann, Sarah D. [1 ]
Sullivan, Millicent O. [1 ]
Epps, Thomas H. [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DIBLOCK COPOLYMER MICELLES; TRANSMISSION ELECTRON-MICROSCOPY; CHAIN EXCHANGE KINETICS; BLOCK-COPOLYMERS; MICELLIZATION KINETICS; RELAXATION KINETICS; POLYMERIC MICELLES; MULTIPLE MORPHOLOGIES; MOLECULAR-EXCHANGE; CRYO-TEM;
D O I
10.1038/ncomms4599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well-defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architectures is controlled by processing methods that rely on cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure.
引用
收藏
页数:10
相关论文
共 66 条
  • [41] On the theory of micellization kinetics
    Nyrkova, IA
    Semenov, AN
    [J]. MACROMOLECULAR THEORY AND SIMULATIONS, 2005, 14 (09) : 569 - 585
  • [42] Polymeric micelle stability
    Owen, Shawn C.
    Chan, Dianna P. Y.
    Shoichet, Molly S.
    [J]. NANO TODAY, 2012, 7 (01) : 53 - 65
  • [43] Patapoff TW, 2009, PHARM DEV TECHNOL, V14, P659, DOI [10.1080/10837450902911929, 10.3109/10837450902911929]
  • [44] Toroidal triblock copolymer assemblies
    Pochan, DJ
    Chen, ZY
    Cui, HG
    Hales, K
    Qi, K
    Wooley, KL
    [J]. SCIENCE, 2004, 306 (5693) : 94 - 97
  • [45] Fusion of poly(vinyl acetate-b-vinyl alcohol) spherical micelles in water induced by poly(ethylene oxide)
    Repollet-Pedrosa, Milton H.
    Mahanthappa, Mahesh K.
    [J]. SOFT MATTER, 2013, 9 (32) : 7684 - 7687
  • [46] Fusion and Fragmentation Dynamics at Equilibrium in Triblock Copolymer Micelles
    Rharbi, Y.
    [J]. MACROMOLECULES, 2012, 45 (24) : 9823 - 9826
  • [47] Schmitt A., 2013, Figshare
  • [48] NIH Image to ImageJ: 25 years of image analysis
    Schneider, Caroline A.
    Rasband, Wayne S.
    Eliceiri, Kevin W.
    [J]. NATURE METHODS, 2012, 9 (07) : 671 - 675
  • [49] Block copolymer nanostructures
    Smart, Thomas
    Lomas, Hannah
    Massignani, Marzia
    Flores-Merino, Miriam V.
    Perez, Lorena Ruiz
    Battaglia, Giuseppe
    [J]. NANO TODAY, 2008, 3 (3-4) : 38 - 46
  • [50] The Influence of Solution-State Conditions and Stirring Rate on the Assembly of Poly(acrylic acid)-Containing Amphiphilic Triblock Copolymers with Multi-Amines
    Sorrells, Jennifer L.
    Tsai, Ying-Hsin
    Wooley, Karen L.
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2010, 48 (20) : 4465 - 4472