Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell

被引:30
作者
Kanninen, Petri [1 ]
Borghei, Maryam [2 ]
Sorsa, Olli [1 ]
Pohjalainen, Elina [1 ]
Kauppinen, Esko I. [2 ]
Ruiz, Virginia [2 ,3 ]
Kallio, Tanja [1 ]
机构
[1] Aalto Univ, Dept Chem, Aalto 00076, Finland
[2] Aalto Univ, Dept Appl Phys, Aalto 00076, Finland
[3] IK4 CIDETEC, Ctr Electrochem Technol, E-20009 Donostia San Sebastian, Spain
基金
芬兰科学院;
关键词
OXYGEN-REDUCTION REACTION; HIGH ELECTROCATALYTIC ACTIVITY; METAL-FREE ELECTROCATALYST; EXCHANGE MEMBRANE; GRAPHENE OXIDE; ACTIVE-SITES; NAFION CONTENT; FREE GROWTH; PERFORMANCE; NANOFIBERS;
D O I
10.1016/j.apcatb.2014.03.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of a direct methanol alkaline anion-exchange membrane (Fumatech FAA3) fuel cell with Pt-free nitrogen-doped few-walled carbon nanotubes (N-FWCNT) as the cathode catalyst is compared with a commercial supported Pt catalyst. The ionomer content of the N-FWCNT cathode catalyst layer is therefore optimized and it is shown to be 40wt% of FAA3. Scanning electron microscopy images of the catalyst layer show that the ionomer forms aggregates with N-FWCNTs probably due to their charged nature and that the catalyst layer structure is remarkably open even with high ionomer contents facilitating the mass transfer of reactants and products to the active sites. With oxygen as the oxidant, the maximum power density obtained with our Pt-free N-FWCNTs (0.78mWcm-2) is slightly higher than with the Pt catalyst (0.72mWcm-2). However, when more practical air is used as the oxidant, the N-FWCNTs (0.73mWcm-2) show clearly superior performance compared to the Pt catalyst (0.18mWcm-2). The lower performance with the Pt catalyst is attributed to the denser electrode layer structure resulting in higher mass transport resistance and to the presence of methanol in the cathode, which poisons the Pt but not the N-FWCNTs. © 2014 Elsevier B.V.
引用
收藏
页码:341 / 349
页数:9
相关论文
共 95 条
[1]   A review on methanol crossover in direct methanol fuel cells: challenges and achievements [J].
Ahmed, Mahmoud ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1213-1228
[2]   Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions [J].
Bai, Jincheng ;
Zhu, Qianqian ;
Lv, Zhexin ;
Dong, Hongzhou ;
Yu, Jianhua ;
Dong, Lifeng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (03) :1413-1418
[3]   Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts [J].
Biddinger, Elizabeth J. ;
von Deak, Dieter ;
Ozkan, Umit S. .
TOPICS IN CATALYSIS, 2009, 52 (11) :1566-1574
[4]  
Borghei M., 2014, APPL CATAL B UNPUB
[5]   PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review [J].
Brouzgou, A. ;
Podias, A. ;
Tsiakaras, P. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (02) :119-136
[6]   Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts [J].
Brun, Nicolas ;
Wohlgemuth, Stephanie A. ;
Osiceanu, Petre ;
Titirici, Magdalena M. .
GREEN CHEMISTRY, 2013, 15 (09) :2514-2524
[7]   Development and electrochemical studies of membrane electrode assemblies for polymer electrolyte alkaline fuel cells using FAA membrane and ionomer [J].
Carmo, Marcelo ;
Doubek, Gustavo ;
Sekol, Ryan C. ;
Linardi, Marcelo ;
Taylor, Andre D. .
JOURNAL OF POWER SOURCES, 2013, 230 :169-175
[8]   Investigation on the durability of direct methanol fuel cells [J].
Cha, Hou-Chin ;
Chen, Charn-Ying ;
Shiu, Jr-Yuan .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :451-456
[9]   Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Chen, Sheng ;
Bi, Jiyu ;
Zhao, Yu ;
Yang, Lijun ;
Zhang, Chen ;
Ma, Yanwen ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2012, 24 (41) :5593-5597
[10]   Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells [J].
Chen, Zhu ;
Higgins, Drew ;
Chen, Zhongwei .
CARBON, 2010, 48 (11) :3057-3065