Quantum dot-based resonance energy transfer and its growing application in biology

被引:487
|
作者
Medintz, Igor L.
Mattoussi, Hedi [1 ]
机构
[1] USN, Res Lab, Ctr Biomol Sci & Engn, Washington, DC 20375 USA
关键词
INTRACELLULAR DELIVERY; PHOTODYNAMIC THERAPY; GOLD NANOPARTICLES; TRANSFER FRET; IN-VIVO; SEMICONDUCTOR NANOCRYSTALS; FLUORESCENCE INTERMITTENCY; PEPTIDE INTERACTION; PROBES; CDSE;
D O I
10.1039/b813919a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We provide an overview of the progress made in the past few years in investigating fluorescence resonance energy transfer (FRET) using semiconductor quantum dots (QDs) and the application of QD-based FRET to probe specific biological processes. We start by providing some of the pertinent conceptual elements involved in resonance energy transfer, and then discuss why the Forster dipole-dipole mechanism applies to QD fluorophores. We then describe the unique QD photophysical properties of direct relevance to FRET and summarize the main advantages offered, along with some of the limitations encountered by QDs as exciton donors and/or acceptors. Next we describe the overall progress made and discuss a few representative examples where QD-based FRET sensing of specific biological processes has been demonstrated. We also detail some of the advances of single molecule FRET using QD-conjugates and highlight the unique information that can be extracted. We conclude by providing an assessment of where QD-based FRET investigations may be evolving in the near future.
引用
收藏
页码:17 / 45
页数:29
相关论文
共 50 条
  • [21] Quantum dot to quantum dot Forster resonance energy transfer: engineering materials for visual color change sensing
    Chern, Margaret
    Toufanian, Reyhaneh
    Dennis, Allison M.
    ANALYST, 2020, 145 (17) : 5754 - 5767
  • [22] A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer
    Daia, Haichao
    Shi, Yan
    Wang, Yilin
    Sun, Yujing
    Hu, Jingting
    Ni, Pengjuan
    Li, Zhuang
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 202 : 201 - 208
  • [23] Fluorescence resonance energy transfer in quantum dot-protein kinase assemblies
    Yildiz, Ibrahim
    Gao, Xinxin
    Harris, Thomas K.
    Raymo, Francisco M.
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2007, : 18081
  • [24] Progress in quantum dot-based biosensors for microRNA assay: A review
    Liu, Wen-jing
    Wang, Li-juan
    Zhang, Chun -yang
    ANALYTICA CHIMICA ACTA, 2023, 1278
  • [25] Multiple exciton generation in quantum dot-based solar cells
    Goodwin, Heather
    Jellicoe, Tom C.
    Davis, Nathaniel J. L. K.
    Bohm, Marcus L.
    NANOPHOTONICS, 2018, 7 (01) : 111 - 126
  • [26] Quantum dot-based HIV capture and imaging in a microfluidic channel
    Kim, Yun-Gon
    Moon, Sangjun
    Kuritzkes, Daniel R.
    Demirci, Utkan
    BIOSENSORS & BIOELECTRONICS, 2009, 25 (01) : 253 - 258
  • [27] Energy Transfer in Quantum Dot Solids
    Kholmicheva, Natalia
    Moroz, Pavel
    Eckard, Holly
    Jensen, Gregory
    Zamkov, Mikhail
    ACS ENERGY LETTERS, 2017, 2 (01): : 154 - 160
  • [28] Quantum dot-based conjugates: Luminous nanotools for cancer research
    Henrique, Rafaella B. L.
    Lima, Joao V. A.
    Santos, Ana L. F.
    Souza, Tiago H. S.
    Santos, Beate S.
    Cabral Filho, Paulo E.
    Fontes, Adriana
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 741
  • [29] Near infrared bioluminescence resonance energy transfer from firefly luciferase-quantum dot bionanoconjugates
    Alam, Rabeka
    Karam, Liliana M.
    Doane, Tennyson L.
    Zylstra, Joshua
    Fontaine, Danielle M.
    Branchini, Bruce R.
    Maye, Mathew M.
    NANOTECHNOLOGY, 2014, 25 (49)
  • [30] Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application
    Stanisavljevic, Maja
    Krizkova, Sona
    Vaculovicova, Marketa
    Kizek, Rene
    Adam, Vojtech
    BIOSENSORS & BIOELECTRONICS, 2015, 74 : 562 - 574