Differential Galois Theory and Lie Symmetries

被引:1
作者
Blazquez-Sanz, David [1 ]
Morales-Ruiz, Juan J. [2 ]
Weil, Jacques-Arthur [3 ]
机构
[1] Univ Nacl Colombia, Bogota, Colombia
[2] Univ Politecn Madrid, E-28040 Madrid, Spain
[3] Univ Limoges, F-87065 Limoges, France
关键词
linear differential system; Picard-Vessiot theory; differential Galois theory; infinitesimal symmetries; EQUATIONS; SYSTEMS;
D O I
10.3842/SIGMA.2015.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the interplay between the differential Galois group and the Lie algebra of infinitesimal symmetries of systems of linear differential equations. We show that some symmetries can be seen as solutions of a hierarchy of linear differential systems. We show that the existence of rational symmetries constrains the differential Galois group in the system in a way that depends of the Maclaurin series of the symmetry along the zero solution.
引用
收藏
页数:17
相关论文
共 22 条
[1]  
[Anonymous], 1986, APPL LIE GROUPS DIFF
[2]  
[Anonymous], GRUNDLEHREN MATH WIS
[3]   Symmetries of linear ordinary differential equations [J].
Athorne, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13) :4639-4649
[4]   Galoisian obstructions to non-Hamiltonian integrability [J].
Ayoul, Michael ;
Zung, Nguyen Tien .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (23-24) :1323-1326
[5]  
Barkatou M.A, 2007, COMPUTER ALGEBRA 200, P22
[6]   LIE'S REDUCTION METHOD AND DIFFERENTIAL GALOIS THEORY IN THE COMPLEX ANALYTIC CONTEXT [J].
Blazquez-Sanz, David ;
Jose Morales-Ruiz, Juan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) :353-379
[7]  
Blázquez-Sanz D, 2010, CONTEMP MATH, V509, P1
[8]   Hidden structure of symmetries [J].
Bogoyavlenskij, OI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :479-488
[9]  
BOGOYAVLENSKIJ OI, 1996, CR ACAD SCI I-MATH, V18, P163
[10]  
Crespo T, 2011, GRADUATE STUDIES MAT, V122