Image steganalysis based on convolutional neural network and feature selection

被引:2
|
作者
Sun, Zhanquan [1 ,4 ]
Lie, Feng [2 ]
Huang, Huifen [3 ]
Wang, Jian [4 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai Key Lab Modern Opt Syst, Engn Res Ctr Opt Instrument & Syst,Minist Educ, Shanghai 200093, Peoples R China
[2] Shanghai Univ, Coll Liberal Arts, Dept Hist, Shanghai, Peoples R China
[3] Shandong Yingcai Univ, Jinan, Shandong, Peoples R China
[4] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
来源
基金
美国国家科学基金会;
关键词
convolutional neural network; feature selection; image steganalysis; MapReduce; wavelet transformation; DEEP BELIEF NETWORKS;
D O I
10.1002/cpe.5469
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Steganalysis is to detect whether or not the seemly innocent image hiding message. It is an important research topic in information security. With the development of steganography technology, steganalysis becomes more and more difficult. Some steganalysis methods have been proposed to improve the performance. Most research work concentrates on special steganography information detection and the image steganography features are designed manually. Few research works concentrate on universal steganalysis methods. In this paper, as the first several attempts, a novel image steganalysis method based on deep neural network is proposed. First, image high-frequency features are extracted with wavelet transformation method because that most image hiding message are high frequency. Second, high-dimensional image steganography features are extracted with deep neural networks according to the high-frequency images and informative features combination is selected with a novel feature selection method based on entropy. Then, a parallel SVM model is proposed to build the steganalysis model based on large scale training samples. At last, the efficiency of the proposed method is illustrated through analyzing a practical image steganalysis example.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Adaptive feature selection for image steganalysis based on classification metrics
    Ma, Yuanyuan
    Yu, Xinquan
    Luo, Xiangyang
    Liu, Dong
    Zhang, Yi
    INFORMATION SCIENCES, 2023, 644
  • [32] Feature pyramid-based convolutional neural network image inpainting
    Shengbo Wang
    Xiuyou Wang
    Signal, Image and Video Processing, 2024, 18 : 437 - 443
  • [33] Feature pyramid-based convolutional neural network image inpainting
    Wang, Shengbo
    Wang, Xiuyou
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 437 - 443
  • [34] Convolutional Neural Network Image Feature Measurement Based on Information Entropy
    Chen Wenjun
    Cong Chao
    Huang Liwen
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [35] Research on Feature Extraction of Tumor Image Based on Convolutional Neural Network
    Yang, Aimin
    Yang, Xiaolei
    Wu, Wenrui
    Liu, Huixiang
    Zhuansun, Yunxi
    IEEE ACCESS, 2019, 7 : 24204 - 24213
  • [36] Image steganalysis feature selection based on the improved Fisher criterion
    Ma, Yuanyuan
    Wang, Jinwei
    Luo, Xiangyang
    Li, Zhenyu
    Yang, Chunfang
    Chen, Jun
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) : 1355 - 1371
  • [37] Image feature selection embedded distribution differences between classes for convolutional neural network
    Liu, Dezheng
    Zhang, Liyong
    Lai, Xiaochen
    Liu, Hui
    Applied Soft Computing, 2022, 131
  • [38] Image feature selection embedded distribution differences between classes for convolutional neural network
    Liu, Dezheng
    Zhang, Liyong
    Lai, Xiaochen
    Liu, Hui
    APPLIED SOFT COMPUTING, 2022, 131
  • [39] Image steganalysis based on feature fusion by improved boosting feature selection algorithm
    Zhang, M.-Q. (api_zmq@126.com), 1600, Board of Optronics Lasers (25):
  • [40] Adaptive Steganalysis Based on Selection Region and Combined Convolutional Neural Networks
    Hu, Donghui
    Shen, Qiang
    Zhou, Shengnan
    Liu, Xueliang
    Fan, Yuqi
    Wang, Lina
    SECURITY AND COMMUNICATION NETWORKS, 2017,