Image steganalysis based on convolutional neural network and feature selection

被引:2
|
作者
Sun, Zhanquan [1 ,4 ]
Lie, Feng [2 ]
Huang, Huifen [3 ]
Wang, Jian [4 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai Key Lab Modern Opt Syst, Engn Res Ctr Opt Instrument & Syst,Minist Educ, Shanghai 200093, Peoples R China
[2] Shanghai Univ, Coll Liberal Arts, Dept Hist, Shanghai, Peoples R China
[3] Shandong Yingcai Univ, Jinan, Shandong, Peoples R China
[4] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
来源
基金
美国国家科学基金会;
关键词
convolutional neural network; feature selection; image steganalysis; MapReduce; wavelet transformation; DEEP BELIEF NETWORKS;
D O I
10.1002/cpe.5469
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Steganalysis is to detect whether or not the seemly innocent image hiding message. It is an important research topic in information security. With the development of steganography technology, steganalysis becomes more and more difficult. Some steganalysis methods have been proposed to improve the performance. Most research work concentrates on special steganography information detection and the image steganography features are designed manually. Few research works concentrate on universal steganalysis methods. In this paper, as the first several attempts, a novel image steganalysis method based on deep neural network is proposed. First, image high-frequency features are extracted with wavelet transformation method because that most image hiding message are high frequency. Second, high-dimensional image steganography features are extracted with deep neural networks according to the high-frequency images and informative features combination is selected with a novel feature selection method based on entropy. Then, a parallel SVM model is proposed to build the steganalysis model based on large scale training samples. At last, the efficiency of the proposed method is illustrated through analyzing a practical image steganalysis example.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] DDAC: a feature extraction method for model of image steganalysis based on convolutional neural network
    Wang X.
    Li J.
    Song Y.
    Tongxin Xuebao/Journal on Communications, 2022, 43 (05): : 68 - 81
  • [2] Dual Convolutional Neural Network for Image Steganalysis
    Kim, Jaeyoung
    Kang, Sanghoon
    Park, Hanhoon
    Park, Jong-Il
    2019 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2019,
  • [3] LGS-Net: A lightweight convolutional neural network based on global feature capture for spatial image steganalysis
    Ma, Yuanyuan
    Wang, Jian
    Zhang, Xinyu
    Wang, Guifang
    Xin, Xianwei
    Zhang, Qianqian
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [4] Reference Image Generation Algorithm for JPEG Image Steganalysis Based on Convolutional Neural Network
    Ren W.
    Zhai L.
    Wang L.
    Jia J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (10): : 2250 - 2261
  • [5] Image Classification Using Convolutional Neural Network Based on Feature Selection for Edge Computing
    Hao, Pingchang
    Zhang, Liyong
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8520 - 8526
  • [6] Convolutional Neural Network-Based Multiscale Feature Selection and Evaluation in Image Segmentation
    Cao, Di
    Cao, Jian-Nong
    Deng, Liang
    Lou, Li-Ping
    IEEE ACCESS, 2024, 12 : 68003 - 68014
  • [7] A Dilated Convolutional Neural Network as Feature Selector for Spatial Image Steganalysis - A Hybrid Classification Scheme
    Karampidis, K.
    Kavallieratou, E.
    Papadourakis, G.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (03) : 342 - 358
  • [8] Convolutional Neural Network Based Text Steganalysis
    Wen, Juan
    Zhou, Xuejing
    Zhong, Ping
    Xue, Yiming
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (03) : 460 - 464
  • [9] A Dilated Convolutional Neural Network as Feature Selector for Spatial Image Steganalysis – A Hybrid Classification Scheme
    K. Karampidis
    E. Kavallieratou
    G. Papadourakis
    Pattern Recognition and Image Analysis, 2020, 30 : 342 - 358
  • [10] Universal Image Steganalysis Based on Convolutional Neural Network with Global Covariance Pooling
    Xiao-Qing Deng
    Bo-Lin Chen
    Wei-Qi Luo
    Da Luo
    Journal of Computer Science and Technology, 2022, 37 : 1134 - 1145