A New Class of High-Order Methods for Fluid Dynamics Simulations Using Gaussian Process Modeling: One-Dimensional Case

被引:7
|
作者
Reyes, Adam [1 ]
Lee, Dongwook [2 ]
Graziani, Carlo [3 ]
Tzeferacos, Petros [3 ,4 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Appl Math & Stat, Santa Cruz, CA 95064 USA
[3] Univ Chicago, Dept Astron & Astrophys, Flash Ctr Computat Sci, Chicago, IL 60637 USA
[4] Univ Oxford, Dept Phys, Oxford, England
基金
美国国家科学基金会;
关键词
Gaussian processes; Stochastic models; High-order methods; Finite volume method; Gas dynamics; Magnetohydrodynamics; FINITE-VOLUME METHOD; RADIAL BASIS FUNCTIONS; EFFICIENT IMPLEMENTATION; POSTSHOCK OSCILLATIONS; CONSERVATION-LAWS; RIEMANN PROBLEMS; EQUATIONS; SCHEMES; INTERPOLATION; ACCURATE;
D O I
10.1007/s10915-017-0625-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an entirely new class of high-order methods for computational fluid dynamics based on the Gaussian process (GP) family of stochastic functions. Our approach is to use kernel-based GP prediction methods to interpolate/reconstruct high-order approximations for solving hyperbolic PDEs. We present a new high-order formulation to solve (magneto)hydrodynamic equations using the GP approach that furnishes an alternative to conventional polynomial-based approaches.
引用
收藏
页码:443 / 480
页数:38
相关论文
共 40 条
  • [1] A New Class of High-Order Methods for Fluid Dynamics Simulations Using Gaussian Process Modeling: One-Dimensional Case
    Adam Reyes
    Dongwook Lee
    Carlo Graziani
    Petros Tzeferacos
    Journal of Scientific Computing, 2018, 76 : 443 - 480
  • [2] New High-order Methods using Gaussian Processes for Computational Fluid Dynamics Simulations
    Lee, Dongwook
    Reyes, Adam
    Graziani, Carlo
    Tzeferacos, Petros
    11TH INTERNATIONAL CONFERENCE ON NUMERICAL MODELING OF SPACE PLASMA FLOWS (ASTRONUM-2016), 2017, 837
  • [3] AN APPLICATION OF GAUSSIAN PROCESS MODELING FOR HIGH-ORDER ACCURATE ADAPTIVE MESH REFINEMENT PROLONGATION
    Reeves, Steven, I
    Lee, Dongwook
    Reyes, Adam
    Graziani, Carlo
    Tzeferacos, Petros
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2022, 17 (01) : 1 - 41
  • [4] One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods
    Casoni, E.
    Peraire, J.
    Huerta, A.
    ECCOMAS MULTIDISCIPLINARY JUBILEE SYMPOSIUM: NEW COMPUTATIONAL CHALLENGES IN MATERIALS, STRUCTURES AND FLUIDS, 2009, 14 : 307 - +
  • [5] One-dimensional shock-capturing for high-order discontinuous Galerkin methods
    Casoni, E.
    Peraire, J.
    Huerta, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 71 (06) : 737 - 755
  • [6] High-order multiscale discontinuous Galerkin methods for the one-dimensional stationary Schrodinger equation
    Dong, Bo
    Wang, Wei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
  • [7] A perspective on high-order methods in computational fluid dynamics
    Wang, ZhiJian
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2016, 59 (01) : 1 - 6
  • [8] High-order fully well-balanced numerical methods for one-dimensional blood flow with discontinuous properties
    Pimentel-Garcia, Ernesto
    Mueller, Lucas O.
    Toro, Eleuterio F.
    Pares, Carlos
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
  • [9] High-order implicit time-stepping with high-order central essentially-non-oscillatory methods for unsteady three-dimensional computational fluid dynamics simulations
    Nguyen, T. Binh
    De Sterck, Hans
    Freret, Lucie
    Groth, Clinton P. T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (02) : 121 - 151
  • [10] Direct modeling for computational fluid dynamics and the construction of high-order compact scheme for compressible flow simulations
    Zhao, Fengxiang
    Ji, Xing
    Shyy, Wei
    Xu, Kun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 477