Nonlinear Denoising of Nonstationary Signals

被引:0
|
作者
German-Sallo, Zoltan [1 ]
机构
[1] Univ Med Pharm Sci & Technol George Emil Palade, Targu Mures, Romania
关键词
Wavelet transform; Time-frequency decomposition; Empirical mode decomposition; Nonlinear filtering;
D O I
10.1007/978-3-030-93817-8_75
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents different time-frequency decomposition-based filtering procedures. These procedures are applied to various types of synthesized nonstationary test signals which are contaminated with different levels of Gaussian white noise. Empirical mode decomposition (EMD), discrete wavelet transform (DWT) and wavelet packet transform (WPT) based procedures are implemented in order to perform nonlinear multiscale filtering. The obtained results are compared and analyzed; conclusions summarize the comparison study.
引用
收藏
页码:843 / 855
页数:13
相关论文
共 50 条
  • [1] NONLINEAR ADAPTIVE PREDICTION OF NONSTATIONARY SIGNALS
    HAYKIN, S
    LI, L
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (02) : 526 - 535
  • [2] Wavelet decomposition and nonlinear prediction of nonstationary vibration signals
    Fan X.-B.
    Zhao B.
    Fan B.-X.
    Noise and Vibration Worldwide, 2020, 51 (03): : 52 - 59
  • [3] Nonlinear adaptive prediction of nonstationary signals with application to speech coding
    Chen, YC
    Stathaki, T
    Constantinides, A
    1997 IEEE FIRST WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 1997, : 125 - 130
  • [4] BAYES ESTIMATES IN PROBLEMS OF NONLINEAR FILTERING OF NONSTATIONARY RADIO SIGNALS
    YARLYKOV, MS
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1971, 16 (08): : 1291 - &
  • [5] A parameter optimization nonlinear adaptive denoising algorithm for chaotic signals
    Wang Meng-Jiao
    Wu Zhong-Tang
    Feng Jiu-Chao
    ACTA PHYSICA SINICA, 2015, 64 (04)
  • [6] Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals
    Zbilut, JP
    Thomasson, N
    Webber, CL
    MEDICAL ENGINEERING & PHYSICS, 2002, 24 (01) : 53 - 60
  • [7] Nonlinear denoising of transient signals with application to event-related potentials
    Effern, A
    Lehnertz, K
    Schreiber, T
    Grunwald, T
    David, P
    Elger, CE
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 140 (3-4) : 257 - 266
  • [8] Monitoring Nonstationary Signals
    Gaouda, A. M.
    Salama, M. M. A.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2009, 24 (03) : 1367 - 1376
  • [9] MODELING OF NONSTATIONARY SIGNALS
    KARMOUCHE, M
    RIFFI, S
    LAMOTTE, M
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C5): : 1357 - 1361
  • [10] The analysis of nonstationary signals
    Gade, S
    GramHansen, K
    SOUND AND VIBRATION, 1997, 31 (01): : 40 - 46