A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force

被引:307
作者
Jiang, L. Y.
Huang, Y. [1 ]
Jiang, H.
Ravichandran, G.
Gao, H.
Hwang, K. C.
Liu, B.
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
[2] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA
[3] CALTECH, Grad Aeronaut Lab, Pasadena, CA 91125 USA
[4] Brown Univ, Div Engn, Providence, RI 02912 USA
[5] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
carbon nanotube composites; cohesive law; carbon nanotube/polymer interface; van der Waals force;
D O I
10.1016/j.jmps.2006.04.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2436 / 2452
页数:17
相关论文
共 44 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Concrete fracture models: testing and practice [J].
Bazant, ZP .
ENGINEERING FRACTURE MECHANICS, 2002, 69 (02) :165-205
[4]   Big returns from small fibers: A review of polymer/carbon nanotube composites [J].
Breuer, O ;
Sundararaj, U .
POLYMER COMPOSITES, 2004, 25 (06) :630-645
[5]   Computational modelling of impact damage in brittle materials [J].
Camacho, GT ;
Ortiz, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) :2899-2938
[6]   The cohesive zone model:: advantages, limitations and challenges [J].
Elices, M ;
Guinea, GV ;
Gómez, J ;
Planas, J .
ENGINEERING FRACTURE MECHANICS, 2002, 69 (02) :137-163
[7]   The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation [J].
Frankland, SJV ;
Harik, VM ;
Odegard, GM ;
Brenner, DW ;
Gates, TS .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) :1655-1661
[8]   Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces [J].
Frankland, SJV ;
Caglar, A ;
Brenner, DW ;
Griebel, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3046-3048
[9]   Impact-induced delamination of composites: a 2D simulation [J].
Geubelle, PH ;
Baylor, JS .
COMPOSITES PART B-ENGINEERING, 1998, 29 (05) :589-602
[10]   Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites [J].
Gou, JH ;
Minaie, B ;
Wang, B ;
Liang, ZY ;
Zhang, C .
COMPUTATIONAL MATERIALS SCIENCE, 2004, 31 (3-4) :225-236