Fault tolerance of self-organizing maps

被引:4
|
作者
Girau, Bernard [1 ]
Torres-Huitzil, Cesar [2 ]
机构
[1] Univ Lorraine, CNRS, LORIA, F-54000 Nancy, France
[2] Tecnol Monterrey, Campus Puebla, Puebla, Mexico
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 24期
关键词
Fault tolerance; Self-organizing maps; Hardware implementation; FPGA;
D O I
10.1007/s00521-018-3769-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bio-inspired computing principles are considered as a source of promising paradigms for fault-tolerant computation. Among bio-inspired approaches, neural networks are potentially capable of absorbing some degrees of vulnerability based on their natural properties. This calls for attention, since beyond energy, the growing number of defects in physical substrates is now a major constraint that affects the design of computing devices. However, studies have shown that most neural networks cannot be considered intrinsically fault tolerant without a proper design. In this paper, the fault tolerance of self-organizing maps (SOMs) is investigated, considering implementations targeted onto field programmable gate arrays, where the bit-flip fault model is employed to inject faults in registers. Quantization and distortion measures are used to evaluate performance on synthetic datasets under different fault ratios. Three passive techniques intended to enhance fault tolerance of SOMs during training/learning are also considered in the evaluation. We also evaluate the influence of technological choices on fault tolerance: sequential or parallel implementation, weight storage policies. Experimental results are analyzed through the evolution of neural prototypes during learning and fault injection. We show that SOMs benefit from an already desirable property: graceful degradation. Moreover, depending on some technological choices, SOMs may become very fault tolerant, and their fault tolerance even improves when weights are stored in an individualized way in the implementation.
引用
收藏
页码:17977 / 17993
页数:17
相关论文
共 50 条
  • [21] Graph multidimensional scaling with self-organizing maps
    Bonabeau, E
    INFORMATION SCIENCES, 2002, 143 (1-4) : 159 - 180
  • [22] A granular computing framework for self-organizing maps
    Herbert, Joseph P.
    Yao, JingTao
    NEUROCOMPUTING, 2009, 72 (13-15) : 2865 - 2872
  • [23] Probabilistic self-organizing maps for qualitative data
    Lopez-Rubio, Ezequiel
    NEURAL NETWORKS, 2010, 23 (10) : 1208 - 1225
  • [24] Quantification of Structural Damage with Self-Organizing Maps
    Abdeljaber, Osama
    Avci, Onur
    Do, Ngoan Tien
    Gul, Mustafa
    Celik, Ozan
    Catbas, F. Necati
    STRUCTURAL HEALTH MONITORING, DAMAGE DETECTION & MECHATRONICS, VOL 7, 2016, : 47 - 57
  • [25] Regional analysis using self-organizing maps
    Chudy, L
    Farkas, I
    POLITICKA EKONOMIE, 2000, 48 (05) : 685 - 697
  • [26] Application of self-organizing maps to genetic algorithms
    Kan, S.
    Fei, Z.
    Kita, E.
    COMPUTER AIDED OPTIMUM DESIGN IN ENGINEERING XI, 2009, 106 : 3 - 11
  • [27] Incremental Self-Organizing Maps for Collaborative Clustering
    Maurel, Denis
    Sublime, Jeremie
    Lefebvre, Sylvain
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 497 - 504
  • [28] Project Management Using Self-Organizing Maps
    Parvizian, Jamshid
    Tarkesh, Named
    Atighehchian, Arezoo
    Farid, Sara
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2005, 5 (01): : 23 - 31
  • [29] Self-organizing maps with recursive neighborhood adaptation
    Lee, JA
    Verleysen, M
    NEURAL NETWORKS, 2002, 15 (8-9) : 993 - 1003
  • [30] Shape indexing using self-organizing maps
    Suganthan, PN
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (04): : 835 - 840