Fault tolerance of self-organizing maps

被引:4
|
作者
Girau, Bernard [1 ]
Torres-Huitzil, Cesar [2 ]
机构
[1] Univ Lorraine, CNRS, LORIA, F-54000 Nancy, France
[2] Tecnol Monterrey, Campus Puebla, Puebla, Mexico
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 24期
关键词
Fault tolerance; Self-organizing maps; Hardware implementation; FPGA;
D O I
10.1007/s00521-018-3769-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bio-inspired computing principles are considered as a source of promising paradigms for fault-tolerant computation. Among bio-inspired approaches, neural networks are potentially capable of absorbing some degrees of vulnerability based on their natural properties. This calls for attention, since beyond energy, the growing number of defects in physical substrates is now a major constraint that affects the design of computing devices. However, studies have shown that most neural networks cannot be considered intrinsically fault tolerant without a proper design. In this paper, the fault tolerance of self-organizing maps (SOMs) is investigated, considering implementations targeted onto field programmable gate arrays, where the bit-flip fault model is employed to inject faults in registers. Quantization and distortion measures are used to evaluate performance on synthetic datasets under different fault ratios. Three passive techniques intended to enhance fault tolerance of SOMs during training/learning are also considered in the evaluation. We also evaluate the influence of technological choices on fault tolerance: sequential or parallel implementation, weight storage policies. Experimental results are analyzed through the evolution of neural prototypes during learning and fault injection. We show that SOMs benefit from an already desirable property: graceful degradation. Moreover, depending on some technological choices, SOMs may become very fault tolerant, and their fault tolerance even improves when weights are stored in an individualized way in the implementation.
引用
收藏
页码:17977 / 17993
页数:17
相关论文
共 50 条
  • [11] Fuzzy Relational Self-Organizing Maps
    Khalilia, Mohammed
    Popescu, Mihail
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [12] Monitoring Blockchains with Self-Organizing Maps
    Chawathe, Sudarshan S.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 1870 - 1875
  • [13] Pairwise Elastic Self-Organizing Maps
    Hartono, Pitoyo
    Take, Yuto
    2017 12TH INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION (WSOM), 2017, : 50 - 56
  • [14] Dynamic Formation of Self-Organizing Maps
    Fix, Jeremy
    ADVANCES IN SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, 2014, 295 : 25 - 34
  • [15] Self-organizing maps for texture classification
    Petrov, Nedyalko
    Georgieva, Antoniya
    Jordanov, Ivan
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (7-8): : 1499 - 1508
  • [16] Assessment of clusteranalysis and self-organizing maps
    Petersohn, H
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1998, 6 (02) : 139 - 149
  • [17] Fault Detection, Diagnosis and Prediction in Electrical Valves Using Self-Organizing Maps
    Goncalves, Luiz Fernando
    Bosa, Jefferson Luiz
    Balen, Tiago Roberto
    Lubaszewski, Marcelo Soares
    Schneider, Eduardo Luis
    Henriques, Renato Ventura
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2011, 27 (04): : 551 - 564
  • [18] Fault Detection, Diagnosis and Prediction in Electrical Valves Using Self-Organizing Maps
    Luiz Fernando Gonçalves
    Jefferson Luiz Bosa
    Tiago Roberto Balen
    Marcelo Soares Lubaszewski
    Eduardo Luis Schneider
    Renato Ventura Henriques
    Journal of Electronic Testing, 2011, 27 : 551 - 564
  • [19] Similarity retrieval based on self-organizing maps
    Im, DJ
    Lee, M
    Lee, YK
    Kim, TE
    Lee, S
    Lee, J
    Lee, KK
    Cho, KD
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, PT 2, 2005, 3481 : 474 - 482
  • [20] Self-organizing maps for drawing large graphs
    Bonabeau, E
    Henaux, F
    INFORMATION PROCESSING LETTERS, 1998, 67 (04) : 177 - 184