Rock and Soil Mechanics Model Parameter Inversion Method Based on Computational Intelligence

被引:0
作者
Yu Rongchun [1 ]
机构
[1] Guangxi Vocat & Tech Inst Ind, Nanning 530001, Peoples R China
来源
PROCEEDINGS OF 2014 IEEE WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS (WARTIA) | 2014年
关键词
Geotechnical Engineering; Parameter Inversion; Computational Intelligence; Genetic Algorithm;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The optimal estimation of geotechnical mechanics model parameters is observed by comparing the difference of the model of information data and the theoretical model. Parameter inversion method based on gradient search method drawback is that there is no guarantee that the search to the global optimal solution, the main reason of which lies in the existence of observation error and model error. By defining the objective function, the parameters identification inverse problem into optimization problem. A numerical example and the engineering practical application results show that the established parameter inversion method based on computational intelligence has good robustness and global convergence properties.
引用
收藏
页码:761 / 763
页数:3
相关论文
共 50 条
  • [41] Model Parameter Online Identification Based SOC Estimation Method
    Liu F.
    Ma J.
    Su W.-X.
    He M.-W.
    Su, Wei-Xing (suweixing@tiangong.edu.cn), 1600, Northeast University (41): : 1543 - 1549
  • [42] Creep parameter inversion for high CFRDs based on improved BP neural network response surface method
    Zhou, Xinjie
    Sun, Xinjian
    Li, Yongye
    Zhang, Juntao
    Li, Zhigang
    Ma, Zhongxiang
    Guan, Zhixuan
    Zhang, Yuxiang
    Zhang, Pengtao
    SOFT COMPUTING, 2022, 26 (18) : 9527 - 9541
  • [43] Creep parameter inversion for high CFRDs based on improved BP neural network response surface method
    Xinjie Zhou
    Xinjian Sun
    Yongye Li
    Juntao Zhang
    Zhigang Li
    Zhongxiang Ma
    Zhixuan Guan
    Yuxiang Zhang
    Pengtao Zhang
    Soft Computing, 2022, 26 : 9527 - 9541
  • [44] Modeling uncertainties in sodium spatial dispersion using a computational intelligence-based kriging method
    Masoomi, Zohreh
    Mesgari, Mohammad Sadi
    Menhaj, Mohammad Bagher
    COMPUTERS & GEOSCIENCES, 2011, 37 (10) : 1545 - 1554
  • [45] Research on the establishment of a mining subsidence prediction model under thick loose layer and its parameter inversion method
    Li, Jingxian
    Yu, Xuexiang
    Chen, Deshu
    Fang, Xinjian
    EARTH SCIENCES RESEARCH JOURNAL, 2021, 25 (02) : 215 - 223
  • [46] Comprehensive analysis method model of Aerobics performance based on Artificial Intelligence
    Lv, Li
    Ye, Chunjuan
    PROCEEDINGS 2016 EIGHTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION ICMTMA 2016, 2016, : 151 - 154
  • [47] Methods of Data Sample Metrics Evaluation Based on Fractal Dimension for Computational Intelligence Model Buiding
    Subbotin, Sergey
    2017 4TH INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE PROBLEMS OF INFOCOMMUNICATIONS-SCIENCE AND TECHNOLOGY (PIC S&T), 2017, : 1 - 6
  • [48] System availability enhancement using computational intelligence-based decision tree predictive model
    Ahmed, Qadeer
    Anifowose, Fatai A.
    Khan, Faisal
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2015, 229 (06) : 612 - 626
  • [49] A realtime drilling risks monitoring method integrating wellbore hydraulics model and streaming-data-driven model parameter inversion algorithm
    Jiang, Hailong
    Liu, Gonghui
    Li, Jun
    Zhang, Tao
    Wang, Chao
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 85
  • [50] Research on Parameter Inversion of Coal Mining Subsidence Prediction Model Based on Improved Whale Optimization Algorithm
    Guo, Qingbiao
    Qiao, Boqing
    Yang, Yingming
    Guo, Junting
    ENERGIES, 2024, 17 (05)