A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface*

被引:14
|
作者
Sun, Quan-Zhen [1 ]
Jia, Hong-Jie [1 ]
Cheng, Shu-Ying [1 ,2 ]
Deng, Hui [1 ]
Yan, Qiong [1 ,3 ]
Duan, Bi-Wen [4 ]
Zhang, Cai-Xia [1 ,2 ]
Zheng, Qiao [1 ,2 ]
Yang, Zhi-Yuan [1 ]
Luo, Yan-Hong [4 ]
Men, Qing-Bo [4 ]
Huang, Shu-Juan [5 ]
机构
[1] Fuzhou Univ, Inst Micronano Devices & Solar Cells, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
[2] Jiangsu Collaborat Innovat Ctr Photovolta Sci & E, Changzhou 213164, Jiangsu, Peoples R China
[3] Fujian Jiangxia Univ, Key Lab Green Perovskites Applicat Fujian Prov Un, Fuzhou 350108, Peoples R China
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[5] Univ New South Wales, Australian Ctr Adv Photovolta, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
flexible solar cells; CdS deposition; heterojunction interface; defect passivation; FILM; PERFORMANCE;
D O I
10.1088/1674-1056/abb7fe
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Flexible Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells show great potential applications due to low-cost, nontoxicity, and stability. The device performances under an especial open circuit voltage (V-OC) are limited by the defect recombination of CZTSSe/CdS heterojunction interface. We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils. The efficiency of the device is improved from 5.7% to 6.86% by highquality junction interface. Furthermore, aiming at the S loss of CdS film, the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality. The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05% efficiency with a V-OC of 0.44 V at an optimized S source concentration of 0.68 mol/L. Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the V-OC deficit. For the CZTSSe device bending characteristics, the device efficiency is almost constant after 1000 bends, manifesting that the CZTSSe device has an excellent mechanical flexibility. The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Efficiency Improvement of Flexible Cu2ZnSn(S,Se)4 Solar Cells by Window Layer Interface Engineering
    Sun, Quanzhen
    Deng, Hui
    Yan, Qiong
    Lin, Beibei
    Xie, Weihao
    Tang, Jianlong
    Zhang, Caixia
    Zheng, Qiao
    Wu, Jionghua
    Yu, Jinling
    Cheng, Shuying
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12): : 14467 - 14475
  • [2] Mechanism of improvement of efficiency of Cu2ZnSn(S,Se)4 solar cells by optimization of deposition temperature of CdS buffer layer
    Wang, Chunkai
    Yao, Bin
    Li, Yongfeng
    Ding, Zhanhui
    Ma, Ding
    Wang, Ting
    Zhang, JiaYong
    Zhang, Dongxu
    Liu, Yue
    Liu, Ruijian
    SOLAR ENERGY, 2023, 262
  • [3] Efficiency enhancement of Cu2ZnSn(S, Se)4 solar cells by addition a CuSe intermediate layer between Cu2ZnSn(S, Se)4 and Mo electrode
    Zhang, JiaYong
    Yao, Bin
    Ding, Zhanhui
    Li, Yongfeng
    Wang, Ting
    Wang, Chunkai
    Liu, Jia
    Ma, Ding
    Zhang, Dongxu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 911
  • [4] Rational Design of Heterojunction Interface for Cu2ZnSn(S,Se)4 Solar Cells to Exceed 12% Efficiency
    Fu, Junjie
    Tian, Qingwen
    Du, Yachao
    Chang, Qianqian
    Guo, Yanping
    Yuan, Shengjie
    Zheng, Zhi
    Wu, Sixin
    Liu, Shengzhong
    SOLAR RRL, 2022, 6 (06)
  • [5] 8% Efficiency Cu2ZnSn(S,Se)4 (CZTSSe) Thin Film Solar Cells on Flexible and Lightweight Molybdenum Foil Substrates
    Jo, Eunae
    Gang, Myeng Gil
    Shim, Hongjae
    Suryawanshi, Mahesh P.
    Ghorpade, Uma V.
    Kim, Jin Hyeok
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (26) : 23118 - 23124
  • [6] Role of zinc tin oxide passivation layer at back electrode interface in improving efficiency of Cu2ZnSn(S,Se)4 solar cells
    Yang, Xiaoyu
    Yao, Bin
    Ding, Zhanhui
    Deng, Rui
    Zhao, Man
    Li, Yongfeng
    MICRO AND NANOSTRUCTURES, 2022, 163
  • [7] A Progress Review on Challenges and Strategies of Flexible Cu2ZnSn(S, Se)4 Solar Cells
    Xie, Weihao
    Yan, Qiong
    Sun, Quanzhen
    Li, Yifan
    Zhang, Caixia
    Deng, Hui
    Cheng, Shuying
    SOLAR RRL, 2023, 7 (04):
  • [8] Improvement of power conversion efficiency of Cu2ZnSn(S,Se)4 solar cells by Al doped CdS
    Ma, Ding
    Yao, Bin
    Li, Yongfeng
    Ding, Zhanhui
    Wang, Chunkai
    Zhang, Jiayong
    Wang, Ting
    Liu, Jia
    Zhang, Dongxu
    PHYSICA B-CONDENSED MATTER, 2022, 643
  • [9] 10.24% Efficiency of Flexible Cu2ZnSn(S,Se)4 Solar Cells by Pre-Evaporation Selenization Technique
    Xie, Weihao
    Sun, Quanzhen
    Yan, Qiong
    Wu, Jionghua
    Zhang, Caixia
    Zheng, Qiao
    Lai, Yunfeng
    Deng, Hui
    Cheng, Shuying
    SMALL, 2022, 18 (22)
  • [10] Defect limitations in Cu2ZnSn(S, Se)4 solar cells utilizing an In2S3 buffer layer
    Campbell, Stephen
    Qu, Yongtao
    Gibbon, James
    Edwards, Holly J.
    Dhanak, Vin R.
    Tiwari, Devendra
    Barrioz, Vincent
    Beattie, Neil S.
    Zoppi, Guillaume
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (20)