The Path to 20% Power Conversion Efficiencies in Nonfullerene Acceptor Organic Solar Cells

被引:186
作者
Karki, Akchheta [1 ]
Gillett, Alexander J. [2 ]
Friend, Richard H. [2 ]
Thuc-Quyen Nguyen [1 ]
机构
[1] Univ Calif Santa Barbara UCSB, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA
[2] Univ Cambridge, Optoelect Grp Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
关键词
charge generation; charge recombination; morphology; nonfullerene acceptors; solid‐ state NMR; voltage losses; SOLID-STATE NMR; OPEN-CIRCUIT VOLTAGE; NON-GEMINATE RECOMBINATION; NON-FULLERENE ACCEPTORS; CHARGE-TRANSFER STATES; HIGH FILL FACTOR; BIMOLECULAR RECOMBINATION; CARRIER GENERATION; PROCESSING ADDITIVES; ELECTRON-TRANSFER;
D O I
10.1002/aenm.202003441
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The power conversion efficiencies (PCEs) of single-junction organic solar cells (OSC) have now reached over 18%. This rapid recent progress can be attributed to the development of new nonfullerene electron acceptors (NFAs) that are paired with suitable high performing polymer electron donors. Substantial improvements in the PCEs and long-term stability enabled by NFA OSCs have allowed the development and integration of these systems into many niche and novel applications. Here, the recent progress that has been made in understanding the device photophysics of high performing polymer:NFA blends is highlighted. As the bulk heterojunction morphology is intrinsically linked to the device photophysics, this review focuses on studies that have provided noteworthy morphological insights using advanced techniques such as solid-state NMR and resonant soft X-ray scattering. Through this, some of the major challenges that must be overcome to attain PCEs of over 20% in NFA OSCs are addressed.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Modeling geminate pair dissociation in organic solar cells: high power conversion efficiencies achieved with moderate optical bandgaps
    Servaites, Jonathan D.
    Savoie, Brett M.
    Brink, Joseph B.
    Marks, Tobin J.
    Ratner, Mark A.
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) : 8343 - 8350
  • [22] Recent Advances in Nonfullerene Acceptors for Organic Solar Cells
    Liu, Fuchuan
    Hou, Tianyu
    Xu, Xiangfei
    Sun, Liya
    Zhou, Jiawang
    Zhao, Xingang
    Zhang, Shiming
    MACROMOLECULAR RAPID COMMUNICATIONS, 2018, 39 (03)
  • [23] Fluorinated Polymer Donors for Nonfullerene Organic Solar Cells
    Li, Dongyan
    Wang, Huijuan
    Chen, Jinming
    Wu, Qinghe
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (12)
  • [24] Recent advances of nonfullerene acceptors in organic solar cells
    Zhou, Dan
    Wang, Jianru
    Xu, Zhentian
    Xu, Haitao
    Quan, Jianwei
    Deng, Jiawei
    Li, Yubing
    Tong, Yongfen
    Hu, Bin
    Chen, Lie
    NANO ENERGY, 2022, 103
  • [25] Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor
    Cha, Hyojung
    Wheeler, Scot
    Holliday, Sarah
    Dimitrov, Stoichko D.
    Wadsworth, Andrew
    Lee, Hyun Hwi
    Baran, Derya
    McCulloch, Iain
    Durrant, James R.
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (03)
  • [26] A nonfullerene acceptor incorporating a dithienopyran fused backbone for organic solar cells with efficiency over 14%
    Ke, Xin
    Meng, Lingxian
    Wan, Xiangjian
    Cai, Yao
    Gao, Huan-Huan
    Yi, Yuan-Qiu-Qiang
    Guo, Ziqi
    Zhang, Hongtao
    Li, Chenxi
    Chen, Yongsheng
    NANO ENERGY, 2020, 75
  • [27] A New Nonfullerene Acceptor with Suppressed Energy Disorder for High-Efficiency Organic Solar Cells
    Li, Zi
    Yao, Huifeng
    Chen, Zhihao
    Wang, Wenxuan
    Xiao, Yang
    Wang, Jianqiu
    Ren, Junzhen
    Zhang, Tao
    Li, Jiayao
    Hou, Jianhui
    CCS CHEMISTRY, 2024, : 2749 - 2757
  • [28] Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells
    Alamoudi, Maha A.
    Khan, Jafar I.
    Firdaus, Yuliar
    Wang, Kai
    Andrienko, Denis
    Beaujuge, Pierre M.
    Laquai, Frederic
    ACS ENERGY LETTERS, 2018, 3 (04): : 802 - 811
  • [29] Asymmetrically Alkyl-Substituted Wide-Bandgap Nonfullerene Acceptor for Organic Solar Cells
    Xia, Tian
    Li, Chao
    Ryu, Hwa Sook
    Sun, Xiaobo
    Woo, Han Young
    Sun, Yanming
    SOLAR RRL, 2020, 4 (05):
  • [30] Atomistic Insight Into Donor/Acceptor Interfaces in High-Efficiency Nonfullerene Organic Solar Cells
    Han, Guangchao
    Guo, Yuan
    Ma, Xiaoyi
    Yi, Yuanping
    SOLAR RRL, 2018, 2 (11):