Advances on Rain Rate Retrieval from Satellite Platforms using Artificial Neural Networks

被引:15
|
作者
Munoz, E. A. [1 ]
Di Paola, F. [2 ]
Lanfri, M. A. [3 ]
机构
[1] Food & Agr Org, Quito, Ecuador
[2] CNR, I-00185 Rome, Italy
[3] Comis Nacl Act Espaciales, Cordoba, Argentina
关键词
Atmospheric Remote Sensing; Atmospheric Radiation; Rain Rate Retrieval Algorithms; Artificial Neural Networks; RADIATIVE-TRANSFER MODEL; PRECIPITATION; CLOUD;
D O I
10.1109/TLA.2015.7387219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the last two decades, great advances have been related with the development of rain rate retrieval algorithms using artificial neural networks, in order to exploit satellite data capabilities. The enhancement of computing processing capacity available from modern computers has impulsed a long number of researches aimed to generate more accurate and faster algorithms. This work deals with how the implementation of new trends in artificial neural networks and the spectral resolution improvement of spaceborne sensors have influenced in the design of retrieval algorithms to estimate rain rate from satellites using artificial neural networks. Recent results have shown an important increasing in accuracy and technical feasibility of implementation, however, the feasibility to use artificial neural networks to estimate rain rate in real time, using remote sensing techniques, is a research issue yet.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 50 条
  • [41] Surface classification using artificial neural networks
    Mainsah, E
    Ndumu, DT
    Ndumu, AN
    THREE-DIMENSIONAL IMAGING AND LASER-BASED SYSTEMS FOR METROLOGY AND INSPECTION II, 1997, 2909 : 139 - 150
  • [42] Forecast Combination by Using Artificial Neural Networks
    Aladag, Cagdas Hakan
    Egrioglu, Erol
    Yolcu, Ufuk
    NEURAL PROCESSING LETTERS, 2010, 32 (03) : 269 - 276
  • [43] DESIGN OF UHPC USING ARTIFICIAL NEURAL NETWORKS
    Ghafari, E.
    Bandarabadi, M.
    Costa, H.
    Julio, E.
    BRITTLE MATRIX COMPOSITES 10, 2012, : 61 - 69
  • [44] Hydrological modelling using artificial neural networks
    Dawson, CW
    Wilby, RL
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2001, 25 (01): : 80 - 108
  • [45] Sleep scoring using artificial neural networks
    Ronzhina, Marina
    Janousek, Oto
    Kolarova, Jana
    Novakova, Marie
    Honzik, Petr
    Provaznik, Ivo
    SLEEP MEDICINE REVIEWS, 2012, 16 (03) : 251 - 263
  • [46] Neutron spectrometry using artificial neural networks
    Vega-Carrillo, HR
    Hernández-Dávila, VM
    Manzanares-Acuña, E
    Sánchez, GAM
    de la Torre, MPI
    Barquero, R
    Palacios, F
    Villafañe, RM
    Arteaga, TA
    Rodriguez, JMO
    RADIATION MEASUREMENTS, 2006, 41 (04) : 425 - 431
  • [47] Forecast Combination by Using Artificial Neural Networks
    Cagdas Hakan Aladag
    Erol Egrioglu
    Ufuk Yolcu
    Neural Processing Letters, 2010, 32 : 269 - 276
  • [48] EXCHANGE RATE DETERMINATION BY ARTIFICIAL NEURAL NETWORKS: THE TURKISH CASE
    Sarialioglu Hayali, Ayca
    Babacan, Hasan Torehan
    JOURNAL OF MEHMET AKIF ERSOY UNIVERSITY ECONOMICS AND ADMINISTRATIVE SCIENCES FACULTY, 2021, 8 (02): : 749 - 760
  • [49] Using artificial neural networks to enhance CART
    William A. Young
    Gary R. Weckman
    Vijaya Hari
    Harry S. Whiting
    Andrew P. Snow
    Neural Computing and Applications, 2012, 21 : 1477 - 1489
  • [50] NETWORK FIREWALL USING ARTIFICIAL NEURAL NETWORKS
    Valentin, Kristian
    Maly, Michal
    COMPUTING AND INFORMATICS, 2013, 32 (06) : 1312 - 1327