Advances on Rain Rate Retrieval from Satellite Platforms using Artificial Neural Networks

被引:15
|
作者
Munoz, E. A. [1 ]
Di Paola, F. [2 ]
Lanfri, M. A. [3 ]
机构
[1] Food & Agr Org, Quito, Ecuador
[2] CNR, I-00185 Rome, Italy
[3] Comis Nacl Act Espaciales, Cordoba, Argentina
关键词
Atmospheric Remote Sensing; Atmospheric Radiation; Rain Rate Retrieval Algorithms; Artificial Neural Networks; RADIATIVE-TRANSFER MODEL; PRECIPITATION; CLOUD;
D O I
10.1109/TLA.2015.7387219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the last two decades, great advances have been related with the development of rain rate retrieval algorithms using artificial neural networks, in order to exploit satellite data capabilities. The enhancement of computing processing capacity available from modern computers has impulsed a long number of researches aimed to generate more accurate and faster algorithms. This work deals with how the implementation of new trends in artificial neural networks and the spectral resolution improvement of spaceborne sensors have influenced in the design of retrieval algorithms to estimate rain rate from satellites using artificial neural networks. Recent results have shown an important increasing in accuracy and technical feasibility of implementation, however, the feasibility to use artificial neural networks to estimate rain rate in real time, using remote sensing techniques, is a research issue yet.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 50 条
  • [31] Estimation of flotation rate constant and collision efficiency using regression and artificial neural networks
    Eskanlou, Amir
    Shahbazi, Behzad
    Hassas, Behzad Vaziri
    SEPARATION SCIENCE AND TECHNOLOGY, 2018, 53 (02) : 374 - 388
  • [32] Amazon Rainforest Deforestation Daily Detection Tool Using Artificial Neural Networks and Satellite Images
    Kehl, Thiago Nunes
    Todt, Viviane
    Veronez, Mauricio Roberto
    Cazella, Silvio Cesar
    SUSTAINABILITY, 2012, 4 (10): : 2566 - 2573
  • [33] A face retrieval technique combining large models and artificial neural networks
    Lu, Jin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024,
  • [34] PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Convolutional Neural Networks
    Sadeghi, Mojtaba
    Asanjan, Ata Akbari
    Faridzad, Mohammad
    Phu Nguyen
    Hsu, Kuolin
    Sorooshian, Soroosh
    Braithwaite, Dan
    JOURNAL OF HYDROMETEOROLOGY, 2019, 20 (12) : 2273 - 2289
  • [35] Soil Moisture and Forest Biomass retrieval on a global scale by using CyGNSS data and Artificial Neural Networks
    Santi, E.
    Pettinato, S.
    Paloscia, S.
    Clarizia, M. P.
    Dente, L.
    Guerriero, L.
    Comite, D.
    Pierdicca, N.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5905 - 5908
  • [36] Predicting the capability-polar-plots for dynamic positioning systems for offshore platforms using artificial neural networks
    Mahfouz, Ayman B.
    OCEAN ENGINEERING, 2007, 34 (8-9) : 1151 - 1163
  • [37] Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors
    Santi, Emanuele
    Paloscia, Simonetta
    Pettinato, Simone
    Fontanelli, Giacomo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 48 : 61 - 73
  • [38] Modulation recognition using artificial neural networks
    Nandi, AK
    Azzouz, EE
    SIGNAL PROCESSING, 1997, 56 (02) : 165 - 175
  • [39] Using artificial neural networks to enhance CART
    Young, William A., II
    Weckman, Gary R.
    Hari, Vijaya
    Whiting, Harry S., II
    Snow, Andrew P.
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (07) : 1477 - 1489
  • [40] VOICE CONVERSION USING ARTIFICIAL NEURAL NETWORKS
    Desai, Srinivas
    Raghavendra, E. Veera
    Yegnanarayana, B.
    Black, Alan W.
    Prahallad, Kishore
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3893 - +