Advances on Rain Rate Retrieval from Satellite Platforms using Artificial Neural Networks

被引:15
|
作者
Munoz, E. A. [1 ]
Di Paola, F. [2 ]
Lanfri, M. A. [3 ]
机构
[1] Food & Agr Org, Quito, Ecuador
[2] CNR, I-00185 Rome, Italy
[3] Comis Nacl Act Espaciales, Cordoba, Argentina
关键词
Atmospheric Remote Sensing; Atmospheric Radiation; Rain Rate Retrieval Algorithms; Artificial Neural Networks; RADIATIVE-TRANSFER MODEL; PRECIPITATION; CLOUD;
D O I
10.1109/TLA.2015.7387219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the last two decades, great advances have been related with the development of rain rate retrieval algorithms using artificial neural networks, in order to exploit satellite data capabilities. The enhancement of computing processing capacity available from modern computers has impulsed a long number of researches aimed to generate more accurate and faster algorithms. This work deals with how the implementation of new trends in artificial neural networks and the spectral resolution improvement of spaceborne sensors have influenced in the design of retrieval algorithms to estimate rain rate from satellites using artificial neural networks. Recent results have shown an important increasing in accuracy and technical feasibility of implementation, however, the feasibility to use artificial neural networks to estimate rain rate in real time, using remote sensing techniques, is a research issue yet.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 50 条
  • [1] Design of a rain rate retrieval algorithm using artificial neural network and the advanced technology microwave sounder
    Munoz, Erith
    Di Paola, Francesco
    Lanfri, Mario
    INGENIERIA UC, 2016, 23 (02): : 153 - 161
  • [2] Satellite-Based Rainfall Retrieval: From Generalized Linear Models to Artificial Neural Networks
    Beusch, Lea
    Foresti, Loris
    Gabella, Marco
    Hamann, Ulrich
    REMOTE SENSING, 2018, 10 (06)
  • [3] Rain intensity forecast using Artificial Neural Networks in Athens, Greece
    Nastos, P. T.
    Moustris, K. P.
    Larissi, I. K.
    Paliatsos, A. G.
    ATMOSPHERIC RESEARCH, 2013, 119 : 153 - 160
  • [4] Retrieval of machining information from feature patterns using artificial neural networks
    Shankar Chakraborty
    Arit Basu
    The International Journal of Advanced Manufacturing Technology, 2006, 27 : 781 - 787
  • [5] Retrieval of machining information from feature patterns using artificial neural networks
    Chakraborty, S
    Basu, A
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 27 (7-8) : 781 - 787
  • [6] Advances in ungauged streamflow prediction using artificial neural networks
    Besaw, Lance E.
    Rizzo, Donna M.
    Bierman, Paul R.
    Hackett, William R.
    JOURNAL OF HYDROLOGY, 2010, 386 (1-4) : 27 - 37
  • [7] The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation
    Piontek, Dennis
    Bugliaro, Luca
    Kar, Jayanta
    Schumann, Ulrich
    Marenco, Franco
    Plu, Matthieu
    Voigt, Christiane
    REMOTE SENSING, 2021, 13 (16)
  • [8] Snow depth retrieval from passive microwave imagery using different artificial neural networks
    Zaerpour, Arash
    Adib, Arash
    Motamedi, Ali
    ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (15)
  • [9] Snow depth retrieval from passive microwave imagery using different artificial neural networks
    Arash Zaerpour
    Arash Adib
    Ali Motamedi
    Arabian Journal of Geosciences, 2020, 13
  • [10] Monitoring of Alpine snow using satellite radiometers and artificial neural networks
    Santi, E.
    Pettinato, S.
    Paloscia, S.
    Pampaloni, P.
    Fontanelli, G.
    Crepaz, A.
    Valt, M.
    REMOTE SENSING OF ENVIRONMENT, 2014, 144 : 179 - 186