Critical nonlinear Schrodinger equations with and without harmonic potential

被引:75
|
作者
Carles, R [1 ]
机构
[1] Univ Bordeaux 1, UMR 5466 CNRS, F-33405 Talence, France
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2002年 / 12卷 / 10期
关键词
critical nonlinear Schrodinger equation; harmonic potential; Bose-Einstein condensation; blow-up in finite time; wave collapse;
D O I
10.1142/S0218202502002215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a change of variables that turns the critical nonlinear Schrodinger equation into the critical nonlinear Schrodinger equation with isotropic harmonic potential, in any spare dimension. This change of variables is isometric on L-2, and bijective on some time intervals. Using the known results for the critical nonlinear Schrodinger equation, this provides information for the properties of Bose-Einstein condensate in spare dimension one and two. We discuss in particular the wave collapse phenomenon.
引用
收藏
页码:1513 / 1523
页数:11
相关论文
共 50 条
  • [31] ON THE CAUCHY PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS WITH ROTATION
    Antonelli, Paolo
    Marahrens, Daniel
    Sparber, Christof
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) : 703 - 715
  • [32] Construction of solutions with exactly k blow-up points for nonlinear Schrodinger equation with a harmonic potential
    Liu, Qian
    Zhou, Yuqian
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 828 - 835
  • [33] Stability of standing waves for the L 2-critical Hartree equations with harmonic potential
    Huang, Juan
    Zhang, Jian
    Li, Xiaoguang
    APPLICABLE ANALYSIS, 2013, 92 (10) : 2076 - 2083
  • [34] Dispersive estimates for nonlinear Schrodinger equations with external potentials
    Dietze, Charlotte
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [35] THE NONLINEAR SCHRODINGER EQUATION ON TORI: INTEGRATING HARMONIC ANALYSIS, GEOMETRY, AND PROBABILITY
    Nahmod, Andrea R.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 53 (01) : 57 - 91
  • [36] An improved finite integration method for nonlocal nonlinear Schrodinger equations
    Zhao, Wei
    Lei, Min
    Hon, Yiu-Chung
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 113 : 24 - 33
  • [37] BLOWUP AND GLOBAL EXISTENCE OF THE NONLINEAR SCHRODINGER EQUATIONS WITH MULTIPLE POTENTIALS
    Gan, Zaihui
    Guo, Boling
    Zhang, Jian
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (04) : 1303 - 1312
  • [38] Collapse in coupled nonlinear Schrodinger equations: Sufficient conditions and applications
    Prytula, Vladyslav
    Vekslerchik, Vadym
    Perez-Garcia, Victor M.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) : 1462 - 1467
  • [39] On supercritical nonlinear Schrodinger equations with ellipse-shaped potentials
    Yang, Jianfu
    Yang, Jinge
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 3187 - 3215
  • [40] Perturbation theory for the nonlinear Schrodinger equation with a random potential
    Fishman, Shmuel
    Krivolapov, Yevgeny
    Soffer, Avy
    NONLINEARITY, 2009, 22 (12) : 2861 - 2887