Critical nonlinear Schrodinger equations with and without harmonic potential

被引:75
|
作者
Carles, R [1 ]
机构
[1] Univ Bordeaux 1, UMR 5466 CNRS, F-33405 Talence, France
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2002年 / 12卷 / 10期
关键词
critical nonlinear Schrodinger equation; harmonic potential; Bose-Einstein condensation; blow-up in finite time; wave collapse;
D O I
10.1142/S0218202502002215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a change of variables that turns the critical nonlinear Schrodinger equation into the critical nonlinear Schrodinger equation with isotropic harmonic potential, in any spare dimension. This change of variables is isometric on L-2, and bijective on some time intervals. Using the known results for the critical nonlinear Schrodinger equation, this provides information for the properties of Bose-Einstein condensate in spare dimension one and two. We discuss in particular the wave collapse phenomenon.
引用
收藏
页码:1513 / 1523
页数:11
相关论文
共 50 条
  • [21] Multiplicity and stability of standing waves for the nonlinear Schrodinger-Poisson equation with a harmonic potential
    Luo, Xiao
    Ye, Hongyu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 1844 - 1858
  • [22] Dynamics of a wavefunction for the attractive nonlinear Schrodinger equation under isotropic harmonic confinement potential
    Morise, H
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (12) : 3529 - 3534
  • [23] Uniqueness of ground states to fractional nonlinear elliptic equations with harmonic potential
    Gou, Tianxiang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [24] On soliton dynamics in nonlinear Schrodinger equations
    Gang, Zhou
    Sigal, I. M.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (06) : 1377 - 1390
  • [25] LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRODINGER EQUATION WITH HARMONIC POTENTIAL IN H8
    Zhang, Shan
    Liu, Zuhan
    Lu, Zhongxue
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1291 - 1302
  • [26] Upper and lower bound of the blow-up rate for nonlinear Schrodinger equation with a harmonic potential
    Liu, Q
    Zhou, YQ
    Zhang, J
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 1121 - 1132
  • [27] ON A FRACTIONAL SCHRODINGER EQUATION IN THE PRESENCE OF HARMONIC POTENTIAL
    Ding, Zhiyan
    Hajaiej, Hichem
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (05): : 3449 - 3469
  • [28] Blow-up for the stochastic nonlinear Schrodinger equations with quadratic potential and additive noise
    Meng, Lixin
    Li, Jingyu
    Tao, Jian
    BOUNDARY VALUE PROBLEMS, 2015,
  • [29] Stationary states of a nonlinear Schrodinger lattice with a harmonic trap
    Achilleos, V.
    Theocharis, G.
    Kevrekidis, P. G.
    Karachalios, N. I.
    Diakonos, F. K.
    Frantzeskakis, D. J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
  • [30] Engineering integrable nonautonomous nonlinear Schrodinger equations
    He, Xu-Gang
    Zhao, Dun
    Li, Lin
    Luo, Hong-Gang
    PHYSICAL REVIEW E, 2009, 79 (05):