Adaptive fuzzy control of DC motors using state and output feedback

被引:66
作者
Rigatos, Gerasimos G. [1 ]
机构
[1] Ind Syst Inst, Unit Ind Automat, Rion 26504, Greece
关键词
DC motors; Adaptive fuzzy control; State feedback; Output feedback; H infinity tracking; Neuro-fuzzy approximators; State observer; Field-oriented induction motors; NEURAL-NETWORK CONTROL; H-INFINITY TRACKING; NONLINEAR-SYSTEMS; IMPLEMENTATION; IDENTIFICATION; ROBUST;
D O I
10.1016/j.epsr.2009.06.007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional PID of state feedback controllers for DC motors have poor performance when changes of the motor or load dynamics take place. To handle this shortcoming adaptive fuzzy control of DC motors is proposed. Neuro-fuzzy networks are used to approximate the unknown motor dynamics. The information needed to generate the control signal comes from feedback of the full state vector or from feedback of only the system's output. In the latter case a state observer is used to estimate the parameters of the state vector. The stability of the closed-loop system is proved with the use of Lyapunov analysis. The performance of the proposed control approach is evaluated through simulation tests. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1579 / 1592
页数:14
相关论文
共 43 条
[1]   HIGH-PERFORMANCE INDUCTION-MOTOR CONTROL VIA INPUT-OUTPUT LINEARIZATION [J].
BODSON, M ;
CHIASSON, J ;
NOVOTNAK, R .
IEEE CONTROL SYSTEMS MAGAZINE, 1994, 14 (04) :25-33
[2]   An experiment in automatic modeling an electrical drive system using fuzzy logic [J].
Branco, PJC ;
Dente, JA .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (02) :254-262
[3]  
Chen BS, 1996, IEEE T FUZZY SYST, V4, P32, DOI 10.1109/91.481843
[4]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[5]  
ESHARKAWI MA, 1994, IEEE T ENERGY CONVER, V9, P317
[6]   Adaptive neural control of uncertain MIMO nonlinear systems [J].
Ge, SS ;
Wang, C .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (03) :674-692
[7]   Neural-network control of nonaffine nonlinear system with zero dynamics by state output feedback [J].
Ge, SS ;
Zhang, J .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (04) :900-918
[8]   Adaptive neural network control of nonlinear systems by state and output feedback [J].
Ge, SS ;
Hang, CC ;
Zhang, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06) :818-828
[9]   Neural adaptive tracking control of a DC motor [J].
Horng, JH .
INFORMATION SCIENCES, 1999, 118 (1-4) :1-13
[10]   Nonlinear control of DC machines [J].
Ibbini, MS ;
Zakaria, WS .
ELECTRIC MACHINES AND POWER SYSTEMS, 1996, 24 (01) :21-35