Elastic wave propagation in symmetrically periodic sinusoidal waveguide

被引:6
|
作者
Banerjee, S [1 ]
Kundu, T [1 ]
机构
[1] Univ Arizona, Dept Civil Engn & Engn Mech, Tucson, AZ 85721 USA
关键词
sinusoidal waveguide; dispersion relation; mode conversion; stop-band; pass-band; wave-number;
D O I
10.1117/12.540009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Wave propagation in structures with irregular boundaries is studied by transforming the plates with irregular surfaces to sinusoidal wave-guides. Guided elastic wave in a two-dimensional periodically corrugated plate is studied analytically. The plate material is considered as homogeneous, isotropic and linearly elastic. In a periodically corrugated wave-guide all possible spectral order of wave numbers are considered. The dispersion equation is obtained by applying the traction free boundary conditions. The analysis is carried out in the wave-number domain for symmetric modes. Non-propagating 'stop bands' and propagating 'pass bands' are investigated.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [31] Elastic wave propagation in periodic particulate composites with tetragonal particle arrangement
    Kinra, VK
    Maslov, K
    Henderson, BK
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 20A AND 20B, 2001, 557 : 65 - 72
  • [32] Non-reciprocal elastic wave propagation in spatiotemporal periodic structures
    Trainiti, G.
    Ruzzene, M.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [33] Elastic wave propagation in a three-dimensional periodic granular medium
    Anfosso, J
    Gibiat, V
    EUROPHYSICS LETTERS, 2004, 67 (03): : 376 - 382
  • [34] SLOW-WAVE PROPAGATION ON MIS PERIODIC CO-PLANAR WAVEGUIDE
    FUKUOKA, Y
    ITOH, T
    ELECTRONICS LETTERS, 1983, 19 (02) : 37 - 38
  • [35] Longitudinal wave propagation in a one-dimensional quasi-periodic waveguide
    Sorokin, Vladislav S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2231):
  • [36] Design and experimental verification of backward-wave propagation in periodic waveguide structures
    Carbonell, J
    Roglá, LJ
    Boria, VE
    Lippens, D
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (04) : 1527 - 1533
  • [37] Bands in the spectrum of a periodic elastic waveguide
    F. L. Bakharev
    J. Taskinen
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [38] Bands in the spectrum of a periodic elastic waveguide
    Bakharev, F. L.
    Taskinen, J.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [39] Elastic wave propagation in periodic stress-driven nonlocal Timoshenko beams
    Alotta, Gioacchino
    Russillo, Andrea Francesco
    Failla, Giuseppe
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2025, 306
  • [40] Fractional order models for the homogenization and wave propagation analysis in periodic elastic beams
    Patnaik, Sansit
    Hollkamp, John P.
    Sidhardh, Sai
    Semperlotti, Fabio
    MECCANICA, 2022, 57 (04) : 757 - 773