Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material

被引:132
作者
Kim, Haegyeom [1 ]
Lim, Eunho [2 ]
Jo, Changshin [3 ]
Yoon, Gabin [1 ,4 ]
Hwang, Jongkook [3 ]
Jeong, Sanha [3 ]
Lee, Jinwoo [2 ,3 ]
Kang, Kisuk [1 ,4 ]
机构
[1] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 151742, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea
[4] Seoul Natl Univ, Inst Basic Sci, Ctr Nanoparticle Res, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Mesoporous; Nb2O5; Intercalation compounds; Electrode; Sodium ion batteries; ELECTROCHEMICAL ENERGY-STORAGE; TRANSITION-METAL OXIDES; HARD CARBON ANODES; HIGH-CAPACITY; ION BATTERIES; RATE CAPABILITY; ELECTRODE MATERIALS; NEGATIVE ELECTRODE; CYCLING STABILITY; GRAPHENE OXIDE;
D O I
10.1016/j.nanoen.2015.05.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work introduces a new intercalation host for the Na ions, Nb2O5, and proposes that a mesoporous Nb2O5/carbon composite can function as a promising sodium insertion material. The highly ordered mesoporous Nb2O5/carbon electrode, synthesized using a block copolymer-assisted one-pot method, demonstrated not only a stable cycle life, but also outstanding rate capability. The excellent Na storage properties of the Nb2O5/carbon electrode were due to the uniquely ordered mesoporous nanostructure and in situ carbon formation whose configuration provided a large electrode-electrolyte interface area and enhanced Na ion and electron transport. Ex situ analyses revealed that Nb2O5 stores Na ions through Na de/intercalation reactions combined with surface capacitive reactions, after the activation process during the first sodiation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 57 条
[1]   Tin-Germanium Alloys as Anode Materials for Sodium-Ion Batteries [J].
Abel, Paul R. ;
Fields, Meredith G. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15860-15867
[2]   The abundances of chemical elements in urban soils [J].
Alekseenko, Vladimir ;
Alekseenko, Alexey .
JOURNAL OF GEOCHEMICAL EXPLORATION, 2014, 147 :245-249
[3]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[4]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[5]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[6]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[7]  
Chase M. W. Jr., 1998, NIST JANAF THEMOCHEM
[8]   Electrochemical Kinetics of Nanostructured Nb2O5 Electrodes [J].
Come, Jeremy ;
Augustyn, Veronica ;
Kim, Jong Woung ;
Rozier, Patrick ;
Taberna, Pierre-Louis ;
Gogotsi, Pavel ;
Long, Jeffrey W. ;
Dunn, Bruce ;
Simon, Patrice .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) :A718-A725
[9]   Tin and graphite based nanocomposites: Potential anode for sodium ion batteries [J].
Datta, Moni Kanchan ;
Epur, Rigved ;
Saha, Partha ;
Kadakia, Karan ;
Park, Sung Kyoo ;
Kuma, Prashant N. .
JOURNAL OF POWER SOURCES, 2013, 225 :316-322
[10]   NaxVO2 as possible electrode for Na-ion batteries [J].
Hamani, David ;
Ati, Mohamed ;
Tarascon, Jean-Marie ;
Rozier, Patrick .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (09) :938-941