Symplectic graphs over finite commutative rings

被引:8
|
作者
Meemark, Yotsanan [1 ]
Puirod, Thammanoon [2 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
[2] Mahidol Wittayanusorn Sch, Dept Math, Nakhon Fathom 73170, Thailand
关键词
SUBCONSTITUENTS;
D O I
10.1016/j.ejc.2014.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a symplectic space over a finite commutative ring R and let g(SPR(V)) be the symplectic graph over R. In this work, we show that it is arc transitive and determine the chromatic number. Moreover, if R is a finite local ring, we obtain its automorphism group, and the chromatic number and the automorphism group of each subconstituent. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:298 / 307
页数:10
相关论文
共 6 条
  • [1] Orthogonal graphs over finite commutative rings of odd characteristic
    Meemark, Yotsanan
    Sriwongsa, Songpon
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 40 : 26 - 45
  • [2] A class of generalized symplectic graphs based on totally isotropic subspaces in symplectic spaces over finite fields
    Huo, Lijun
    Cheng, Weidong
    FILOMAT, 2024, 38 (10) : 3651 - 3663
  • [3] Construction of symplectic graphs by using 2-dimensional symplectic non-isotropic subspaces over finite fields
    Su, Leilei
    Nan, Jizhu
    Wei, Yangjiang
    DISCRETE MATHEMATICS, 2020, 343 (04)
  • [4] Automorphisms of Subconstituents of Symplectic Graphs
    Gu, Zhenhua
    Wan, Zhexian
    ALGEBRA COLLOQUIUM, 2013, 20 (02) : 333 - 342
  • [5] Automorphisms of linear functional graphs over vector spaces
    Majidinya, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5681 - 5697
  • [6] Automorphisms and domination numbers of transformation graphs over vector spaces
    Wang, Xinlei
    Wong, Dein
    Sun, Dongqin
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (07): : 1350 - 1363