Polymer-Coated Radioluminescent Nanoparticles for Quantitative Imaging of Drug Delivery

被引:17
作者
Moore, Thomas L. [1 ]
Wang, Fenglin [2 ]
Chen, Hongyu [2 ]
Grimes, Stuart W. [1 ]
Anker, Jeffrey N. [2 ]
Alexis, Frank [1 ]
机构
[1] Clemson Univ, Dept Bioengn, Rhodes Res Ctr 301, Clemson, SC 29634 USA
[2] Clemson Univ, Dept Chem, COMSET, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
theranostics; radioluminescent nanoparticles; polymer coatings; monitoring; drug release; PHOTODYNAMIC THERAPY; COLLOIDAL GOLD; UP-CONVERSION; IRON-OXIDE; RELEASE; LUMINESCENT; CANCER; BIODISTRIBUTION; TISSUE; NANOTECHNOLOGIES;
D O I
10.1002/adfm.201400949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Some theranostic nanoparticle (NP) drug delivery systems are capable of measuring drug release rates in situ. This can provide quantitative information regarding drug biodistribution, and drug dose that is delivered to cells or tissues. Here, X-ray excited optical luminescent (XEOL) NPs coated with poly(glycolide)-poly(ethylene glycol) (XGP) are used measure the amount of drug released into cells. The photoactive drug protoporphyrin IX (PpIX) is loaded into XGP and is able to attenuate the XEOL NP emission. Measuring an increase in XEOL intensity as PpIX is released enables the measurement of drug release into glioblastoma cells (GBM). Biodistribution studies in a BALB/c mouse GBM intracranial xenograft model show significant XGP accumulation at the site of the GBM xenograft within the brain, and not in adjacent healthy brain tissues. There is no uptake of XGP in the heart or kidneys, the primary organs associated with drug and gadolinium ion toxicity. NP toxicity is tested with U-138MG GBM in vitro, and NPs show low cytotoxicity at concentrations of 100 g/mL. In vivo dose escalation studies in BALB/c mice show no adverse effects at doses up to 75 mg/kg. These theranostic NPs offer an approach to quantitatively measure drug release into cells.
引用
收藏
页码:5815 / 5823
页数:9
相关论文
共 69 条
[1]   Factors affecting the clearance and biodistribution of polymeric nanoparticles [J].
Alexis, Frank ;
Pridgen, Eric ;
Molnar, Linda K. ;
Farokhzad, Omid C. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :505-515
[2]  
Alexis F, 2014, THER DELIV, V5, P97, DOI [10.4155/tde.13.136, 10.4155/TDE.13.136]
[3]  
Alexis Frank, 2010, Handb Exp Pharmacol, P55, DOI 10.1007/978-3-642-00477-3_2
[4]   Oncologic photodynamic therapy photosensitizers: A clinical review [J].
Allison, Ron R. ;
Sibata, Claudio H. .
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2010, 7 (02) :61-75
[5]  
Aoki H, 1999, J MATER SCI-MATER M, V11, P67
[6]   Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer [J].
Bagalkot, Vaishali ;
Zhang, Liangfang ;
Levy-Nissenbaum, Etgar ;
Jon, Sangyong ;
Kantoff, Philip W. ;
Langer, Robert ;
Farokhzad, Omid C. .
NANO LETTERS, 2007, 7 (10) :3065-3070
[7]   Using Fluorescence Lifetime Imaging Microscopy to Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release [J].
Basuki, Johan S. ;
Duong, Hien T. T. ;
Macmillan, Alexander ;
Erlich, Rafael B. ;
Esser, Lars ;
Akerfeldt, Mia C. ;
Whan, Renee Megan ;
Kavallaris, Maria ;
Boyer, Cyrille ;
Davis, Thomas P. .
ACS NANO, 2013, 7 (11) :10175-10189
[8]   Responsive Theranostic Systems: Integration of Diagnostic Imaging Agents and Responsive Controlled Release Drug Delivery Carriers [J].
Caldorera-Moore, Mary E. ;
Liechty, William B. ;
Peppas, Nicholas A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (10) :1061-1070
[9]   Limited-angle x-ray luminescence tomography: methodology and feasibility study [J].
Carpenter, C. M. ;
Pratx, G. ;
Sun, C. ;
Xing, L. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (12) :3487-3502
[10]   Cone beam x-ray luminescence computed tomography: A feasibility study [J].
Chen, Dongmei ;
Zhu, Shouping ;
Yi, Huangjian ;
Zhang, Xianghan ;
Chen, Duofang ;
Liang, Jimin ;
Tian, Jie .
MEDICAL PHYSICS, 2013, 40 (03)